In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure. From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line. They are named for Friedrich Wilhelm Levi, who wrote about them in 1942.
The Levi graph of a system of points and lines usually has girth at least six: Any 4-cycles would correspond to two lines through the same two points. Conversely any bipartite graph with girth at least six can be viewed as the Levi graph of an abstract incidence structure. Levi graphs of configurations are biregular, and every biregular graph with girth at least six can be viewed as the Levi graph of an abstract configuration.
Levi graphs may also be defined for other types of incidence structure, such as the incidences between points and planes in Euclidean space. For every Levi graph, there is an equivalent hypergraph, and vice versa.
The Desargues graph is the Levi graph of the Desargues configuration, composed of 10 points and 10 lines. There are 3 points on each line, and 3 lines passing through each point. The Desargues graph can also be viewed as the generalized Petersen graph G(10,3) or the bipartite Kneser graph with parameters 5,2. It is 3-regular with 20 vertices.
The Heawood graph is the Levi graph of the Fano plane. It is also known as the (3,6)-cage, and is 3-regular with 14 vertices.
The Möbius–Kantor graph is the Levi graph of the Möbius–Kantor configuration, a system of 8 points and 8 lines that cannot be realized by straight lines in the Euclidean plane. It is 3-regular with 16 vertices.
The Pappus graph is the Levi graph of the Pappus configuration, composed of 9 points and 9 lines. Like the Desargues configuration there are 3 points on each line and 3 lines passing through each point. It is 3-regular with 18 vertices.
The Gray graph is the Levi graph of a configuration that can be realized in as a grid of 27 points and the 27 orthogonal lines through them.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book Geometrie der Lage, in the context of a discussion of Desargues' theorem.
In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point lies on a line" or "a line is contained in a plane" are used. The most basic incidence relation is that between a point, P, and a line, l, sometimes denoted P I l. If P I l the pair (P, l) is called a flag. There are many expressions used in common language to describe incidence (for example, a line passes through a point, a point lies in a plane, etc.
In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore all the properties of this geometry except for the relation of which points are on which lines for all points and lines. What is left is the incidence structure of the Euclidean plane.
We tested whether motion and configural complexity affect perceived transparency. A series of five coherent chromatic transformations in color space was applied across a figure: translation, convergence, shear, divergence and rotation. The stimuli consiste ...
The extension complexity xc(P) of a polytope P is the minimum number of facets of a polytope that affinely projects to P. Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. ...
Springer2017
We show that the Chow covectors of a linkage matching field define a bijection of lattice points and we demonstrate how one can recover the linkage matching field from this bijection. This resolves two open questions from Sturmfels & Zelevinsky (1993) on l ...