Concept

Sodium chlorate

Summary
Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leaves sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching pulp to produce high brightness paper. Industrially, sodium chlorate is produced by the electrolysis of concentrated sodium chloride solutions. All other processes are obsolete. The sodium chlorate process is not to be confused with the chloralkali process, which is an industrial process for the electrolytic production of sodium hydroxide and chlorine gas. The overall reaction can be simplified to the equation: First, chloride is oxidised to form intermediate hypochlorite, ClO−, which undergoes further oxidisation to chlorate along two competing reaction paths: (1) Anodic chlorate formation at the boundary layer between the electrolyte and the anode, and (2) Autoxidation of hypochlorite in the bulk electrolyte. Under electrolysis hydrogen and sodium hydroxide are formed at the cathode and chloride ions are discharged at the anode (mixed metal oxide electrode is often used). The evolved chlorine does not escape as a gas but undergoes hydrolysis: The hydrolysis of chlorine is considered to be fast. The formation of H+ ions should make the boundary layer at the anode strongly acidic and this is observed at low chloride concentrations. However, large concentrations of chloride, as they occur in industrial chlorate cells, shift the hydrolysis equilibrium to the left. At the boundary layer the concentration of H+ is not high enough to permit diffusion into the bulk electrolyte. Therefore hydrogen is transported away from the anode mostly as hypochlorous acid rather than H+. The hypochlorous acid dissociates in the bulk electrolyte where the pH is high and the hypochlorite ion diffuses back to the anode. More than two thirds of the hypochlorite is consumed by buffering before reaching the anode.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.