Summary
A prominence, sometimes referred to as a filament, is a large plasma and magnetic field structure extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface in the photosphere, and extend outwards into the solar corona. While the corona consists of extremely hot plasma, prominences contain much cooler plasma, similar in composition to that of the chromosphere. Prominences form over timescales of about a day and may persist in the corona for several weeks or months, looping hundreds of thousands of kilometers into space. Some prominences may give rise to coronal mass ejections. Scientists are currently researching how and why prominences are formed. A typical prominence extends over many thousands of kilometers; the largest on record was estimated at over long, roughly a solar radius. The first detailed description of a solar prominence was in 14th-century Laurentian Codex, describing the Solar eclipse of 1 May 1185. They were described as "flame-like tongues of live embers." Prominences were first photographed during the solar eclipse of July 18, 1860 by Angelo Secchi. From these photographs, altitude, emissivity, and many other important parameters were able to be derived for the first time. During the solar eclipse of August 18, 1868, spectroscopes were for the first time able to detect the presence of emission lines from prominences. The detection of a hydrogen line confirmed that prominences were gaseous in nature. Pierre Janssen was also able to detect an emission line corresponding to an at the time unknown element now known as helium. The following day, Janssen confirmed his measurements by recording the emission lines from the now unobstructed Sun, a task that had never been done before. Using his new techniques, astronomers were able to study prominences daily. There are a number of different prominence classification schemes in use today. One of the most widely used and basic schemes classifies prominences based on the magnetic environment in which they had formed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.