In thermodynamics, an adiabatic process (Greek: adiábatos, "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics. Some chemical and physical processes occur too rapidly for energy to enter or leave the system as heat, allowing a convenient "adiabatic approximation". For example, the adiabatic flame temperature uses this approximation to calculate the upper limit of flame temperature by assuming combustion loses no heat to its surroundings. In meteorology and oceanography, adiabatic cooling produces condensation of moisture or salinity, oversaturating the parcel. Therefore, the excess must be removed. There, the process becomes a pseudo-adiabatic process whereby the liquid water or salt that condenses is assumed to be removed upon formation by idealized instantaneous precipitation. The pseudoadiabatic process is only defined for expansion because a compressed parcel becomes warmer and remains undersaturated. A process without transfer of heat to or from a system, so that Q = 0, is called adiabatic, and such a system is said to be adiabatically isolated. The simplifying assumption frequently made is that a process is adiabatic. For example, the compression of a gas within a cylinder of an engine is assumed to occur so rapidly that on the time scale of the compression process, little of the system's energy can be transferred out as heat to the surroundings. Even though the cylinders are not insulated and are quite conductive, that process is idealized to be adiabatic. The same can be said to be true for the expansion process of such a system. The assumption of adiabatic isolation is useful and often combined with other such idealizations to calculate a good first approximation of a system's behaviour.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (24)
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Show more
Related lectures (110)
Thermodynamics and Energetics I
Explores fundamental thermodynamics concepts, laws, energy transfer, and system analysis.
Schlieren Images and Speed of Sound
Explores Schlieren images and the speed of sound in different materials.
Statistical Physics: Systems Isolation
Explores statistical physics concepts in isolated systems, focusing on entropy and disorder.
Show more
Related publications (157)

Process modeling and integration of hydrogen and synthetic natural gas production in a kraft pulp mill via black liquor gasification

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos

The black liquor gasification integrated to chemical plants has shown potential for reducing the process irreversibility and promoting the decarbonization of this industrial sector. In the integrated chemical plants proposed in this work, the purpose is co ...
2023

Phonon Self-Energy Corrections: To Screen, or Not to Screen

Nicola Marzari, Samuel Poncé

First-principles calculations of phonons are often based on the adiabatic approximation and on Brillouinzone samplings that might not always be sufficient to capture the subtleties of Kohn anomalies. These shortcomings can be addressed through corrections ...
College Pk2023

Swiss dams: Overview of historical development

Anton Schleiss

With more than 220 large dams in operation, compared to its surface of some 41ʹ000 km2, Switzerland has a very large fleet. They were erected to meet various economic and protection needs. Their main assignments concern the storage of water for later use, ...
CRC Press/Balkema2023
Show more
Related concepts (28)
Thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics.
Thermodynamic temperature
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are now understood as manifestations of the kinetic energy of free motion of microscopic particles such as atoms, molecules, and electrons.
Entropy
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory.
Show more
Related MOOCs (6)
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.