Concept

Power of three

In mathematics, a power of three is a number of the form 3n where n is an integer, that is, the result of exponentiation with number three as the base and integer n as the exponent. In a context where only integers are considered, n is restricted to non-negative values, so there are 1, 3, and 3 multiplied by itself a certain number of times. The first ten powers of 3 for non-negative values of n are: 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, ... The powers of three give the place values in the ternary numeral system. In graph theory, powers of three appear in the Moon–Moser bound 3n/3 on the number of maximal independent sets of an n-vertex graph, and in the time analysis of the Bron–Kerbosch algorithm for finding these sets. Several important strongly regular graphs also have a number of vertices that is a power of three, including the Brouwer–Haemers graph (81 vertices), Berlekamp–van Lint–Seidel graph (243 vertices), and Games graph (729 vertices). In enumerative combinatorics, there are 3n signed subsets of a set of n elements. In polyhedral combinatorics, the hypercube and all other Hanner polytopes have a number of faces (not counting the empty set as a face) that is a power of three. For example, a 2-cube, or square, has 4 vertices, 4 edges and 1 face, and 4 + 4 + 1 = 32. Kalai's 3d conjecture states that this is the minimum possible number of faces for a centrally symmetric polytope. In recreational mathematics and fractal geometry, inverse power-of-three lengths occur in the constructions leading to the Koch snowflake, Cantor set, Sierpinski carpet and Menger sponge, in the number of elements in the construction steps for a Sierpinski triangle, and in many formulas related to these sets. There are 3n possible states in an n-disk Tower of Hanoi puzzle or vertices in its associated Hanoi graph. In a balance puzzle with w weighing steps, there are 3w possible outcomes (sequences where the scale tilts left or right or stays balanced); powers of three often arise in the solutions to these puzzles, and it has been suggested that (for similar reasons) the powers of three would make an ideal system of coins.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Fifth-generation fractal antenna design based on the Koch Snowflake geometry. A fractal theory application

Maria-Alexandra Paun

The projection of fifth-generation (5G) fractal antennas and their advantageous geometry are examined. The fact that fractal-shaped antennas based on Koch Snowflake geometry are suitable for higher frequencies was shown above all. By the instrumentality of ...
WILEY2023

Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas

Olivier Martin, Jérémy Butet, Gabriel David Bernasconi

We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and sp ...
2017
Related concepts (1)
Sierpiński triangle
The Sierpiński triangle (sometimes spelled Sierpinski), also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.