Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
Quantum computing has made significant progress in recent years, with Google and IBM releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved quantum supremacy with its 54-qubit device, and IBM has announced the release of ...
Universal quantum algorithms that prepare arbitrary n-qubit quantum states require O(2n) gate complexity. The complexity can be reduced by considering specific families of quantum states depending on the task at hand. In particular, multipartite quantum st ...
Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution ...
Frequency-bin qubits get the best of time-bin and dual-rail encodings, but require external modulators and pulse shapers to build arbitrary states. Here, instead, the authors work directly on-chip by controlling the interference of biphoton amplitudes gene ...
Lanthanide atoms on surfaces are an exceptional platform for atomic-scale magnetic information storage. However, their potential as qubits remains unexplored due to the limited number of experimental setups that can coherently drive the spins of single ada ...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit oper ...