In the seven-layer OSI model of computer networking, the session layer is layer 5.
The session layer provides the mechanism for opening, closing and managing a session between end-user application processes, i.e., a semi-permanent dialogue. Communication sessions consist of requests and responses that occur between applications. Session-layer services are commonly used in application environments that make use of remote procedure calls (RPCs).
An example of a session-layer protocol is the OSI protocol suite session-layer protocol, also known as X.225 or ISO 8327. In case of a connection loss this protocol may try to recover the connection. If a connection is not used for a long period, the session-layer protocol may close it and re-open it. It provides for either full duplex or half-duplex operation and provides synchronization points in the stream of exchanged messages.
Other examples of session layer implementations include Zone Information Protocol (ZIP) – the AppleTalk protocol that coordinates the name binding process, and Session Control Protocol (SCP) – the DECnet Phase IV session-layer protocol.
Within the service layering semantics of the OSI network architecture, the session layer responds to service requests from the presentation layer and issues service requests to the transport layer.
At the minimum, the session layer allows the two sides to establish and use a connection, called a session, and allows orderly release of the connection.
In the OSI model, the transport layer is not responsible for an orderly release of a connection. Instead, the session layer is responsible for that. However, in modern TCP/IP networks, TCP already provides orderly closing of connections at the transport layer.
After a session connection is released, the underlying transport connection may be reused for another session connection. Also, a session connection may make use of multiple consecutive transport connections. For example, if, during a session, the underlying transport connection has a failure, the session layer may try to re-establish a transport connection to continue the session.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing. The details of implementation and semantics of the transport layer of the Internet protocol suite, which is the foundation of the Internet, and the OSI model of general networking are different.
An application layer is an abstraction layer that specifies the shared communications protocols and interface methods used by hosts in a communications network. An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. Although both models use the same term for their respective highest-level layer, the detailed definitions and purposes are different. In the Internet protocol suite, the application layer contains the communications protocols and interface methods used in process-to-process communications across an Internet Protocol (IP) computer network.
A communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity. The protocol defines the rules, syntax, semantics, and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both. Communicating systems use well-defined formats for exchanging various messages.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
This study investigates the microstructure and properties of functionally graded NiTi alloy bilayers. The NiTi layer is printed by laser powder bed fusion on a NiTiX (where X is Hf or Cu) substrate prepared by vacuum arc remelting. Specimens produced with ...
Laser-induced forward transfer (LIFT) technique is an emerging micro additive manufacturing (AM) technique that has been widely used to print a variety of materials. Distinguished from other nozzle-based AM techniques, LIFT operates without the existence o ...
EPFL2023
, ,
A data storage medium (2) comprising a stacked plurality of layers (9), each layer composed of a layer material selected from a group comprising at least two different dielectric materials, adjacent layers being formed of different materials, and at least ...