Heavy water (deuterium oxide, 2H2O, D2O) is a form of water whose hydrogen atoms are all deuterium (2H or D, also known as heavy hydrogen) rather than the common hydrogen-1 isotope (1H or H, also called protium) that makes up most of the hydrogen in normal water. The presence of the heavier hydrogen isotope gives the water different nuclear properties, and the increase in mass gives it slightly different physical and chemical properties when compared to normal water. Deuterium is a heavy hydrogen isotope. Heavy water contains deuterium atoms and is used in nuclear reactors. Semiheavy water (HDO) is more common than pure heavy water, while heavy-oxygen water is denser but lacks unique properties. Tritiated water is radioactive due to tritium content. Heavy water (D2O) has different physical properties than regular water, such as being 10.6% denser and having a higher melting point. Heavy water is less dissociated at a given temperature, and it does not have the blue color of regular water. While it has no significant taste difference, it can taste slightly sweet. Heavy water affects biological systems by altering enzymes, hydrogen bonds, and cell division in eukaryotes. It can be lethal to multicellular organisms at concentrations over 50%. However, some prokaryotes like bacteria can survive in a heavy hydrogen environment. Heavy water can be toxic to humans, but a large amount would be needed for poisoning to occur. Deuterated water (HDO) occurs naturally in normal water and can be separated through distillation, electrolysis, or chemical exchange processes. The most cost-effective process for producing heavy water is the Girdler sulfide process. Heavy water is used in various industries and is sold in different grades of purity. Some of its applications include nuclear magnetic resonance, infrared spectroscopy, neutron moderation, neutrino detection, metabolic rate testing, neutron capture therapy, and the production of radioactive materials such as plutonium and tritium.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
Show more
Related lectures (31)
Fusion Energy: Challenges and Solutions
Discusses the importance of energy for development, the need for alternative energy sources, and the potential of fusion energy.
Diffusion of Neutrons
Discusses the physical significance of neutron diffusion and analytical solutions for a point source.
Carbonate Equilibrium and Alkalinity
Delves into the carbonate equilibrium system, explaining its importance in water and the proton balance equations.
Show more
Related publications (114)

Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments

Jana Freiin von Freyberg, Davide Canone

The young water fraction represents the portion of water molecules in a stream that have entered the catchment relatively recently, typically within 2-3 months. It can be reliably estimated in spatially heterogeneous and nonstationary catchments from the a ...
Copernicus Gesellschaft Mbh2024

The isotopic signature of U(V) during bacterial reduction

Marinella Mazzanti, Rizlan Bernier-Latmani, Margaux Camille Andréa Molinas, Radmila Faizova, Ashley Richards Brown

The two-step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV inte ...
2024
Show more
Related concepts (28)
Nuclear reactor
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid (water or gas), which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating.
Uranium
Uranium is a chemical element with symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays by emitting an alpha particle. The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes, making them useful for dating the age of the Earth.
Nuclear fission
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay. Nuclear fission was discovered on 19 December 1938 in Berlin by German chemists Otto Hahn and Fritz Strassmann. Physicists Lise Meitner and her nephew Otto Robert Frisch explained it theoretically in January 1939. Frisch named the process "fission" by analogy with biological fission of living cells.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.