Concept

Centers of gravity in non-uniform fields

Summary
In physics, a center of gravity of a material body is a point that may be used for a summary description of gravitational interactions. In a uniform gravitational field, the center of mass serves as the center of gravity. This is a very good approximation for smaller bodies near the surface of Earth, so there is no practical need to distinguish "center of gravity" from "center of mass" in most applications, such as engineering and medicine. In a non-uniform field, gravitational effects such as potential energy, force, and torque can no longer be calculated using the center of mass alone. In particular, a non-uniform gravitational field can produce a torque on an object, even about an axis through the center of mass. The center of gravity seeks to explain this effect. Formally, a center of gravity is an application point of the resultant gravitational force on the body. Such a point may not exist, and if it exists, it is not unique. One can further define a unique center of gravity by approximating the field as either parallel or spherically symmetric. The concept of a center of gravity as distinct from the center of mass is rarely used in applications, even in celestial mechanics, where non-uniform fields are important. Since the center of gravity depends on the external field, its motion is harder to determine than the motion of the center of mass. The common method to deal with gravitational torques is a field theory. Center of mass One way to define the center of gravity of a body is as the unique point in the body if it exists, that satisfies the following requirement: There is no torque about the point for any positioning of the body in the field of force in which it is placed. This center of gravity exists only when the force is uniform, in which case it coincides with the center of mass. This approach dates back to Archimedes. When a body is affected by a non-uniform external gravitational field, one can sometimes define a center of gravity relative to that field that will act as a point where the gravitational force is applied.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.