**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Vacuum solution (general relativity)

Summary

In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term (and thus, the lambdavacuums can be taken as cosmological models).
More generally, a vacuum region in a Lorentzian manifold is a region in which the Einstein tensor vanishes.
Vacuum solutions are a special case of the more general exact solutions in general relativity.
It is a mathematical fact that the Einstein tensor vanishes if and only if the Ricci tensor vanishes. This follows from the fact that these two second rank tensors stand in a kind of dual relationship; they are the trace reverse of each other:
where the traces are .
A third equivalent condition follows from the Ricci decomposition of the Riemann curvature tensor as a sum of the Weyl curvature tensor plus terms built out of the Ricci tensor: the Weyl and Riemann tensors agree, , in some region if and only if it is a vacuum region.
Since in a vacuum region, it might seem that according to general relativity, vacuum regions must contain no energy. But the gravitational field can do work, so we must expect the gravitational field itself to possess energy, and it does. However, determining the precise location of this gravitational field energy is technically problematical in general relativity, by its very nature of the clean separation into a universal gravitational interaction and "all the rest".
The fact that the gravitational field itself possesses energy yields a way to understand the nonlinearity of the Einstein field equation: this gravitational field energy itself produces more gravity.

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (13)

Related publications (67)

Related people (8)

Related courses (28)

Related MOOCs (1)

Related units (3)

Related lectures (138)

Exact solutions in general relativity

In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.

Pp-wave spacetime

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt. The pp-waves solutions model radiation moving at the speed of light. This radiation may consist of: electromagnetic radiation, gravitational radiation, massless radiation associated with Weyl fermions, massless radiation associated with some hypothetical distinct type relativistic classical field, or any combination of these, so long as the radiation is all moving in the same direction.

Test particle

In physical theories, a test particle, or test charge, is an idealized model of an object whose physical properties (usually mass, charge, or size) are assumed to be negligible except for the property being studied, which is considered to be insufficient to alter the behavior of the rest of the system. The concept of a test particle often simplifies problems, and can provide a good approximation for physical phenomena. In addition to its uses in the simplification of the dynamics of a system in particular limits, it is also used as a diagnostic in computer simulations of physical processes.

MATH-106(e): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

PHYS-454: Quantum optics and quantum information

This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov

MATH-106(c): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

Optical Bloch Equations

Covers the derivation and solutions of Optical Bloch Equations for a two-level quantum system.

Introduction to Plasma Physics

Covers the dynamics of particles in electric and magnetic fields in plasma physics.

Holography of Information: Hilbert Space & Quantum Gravity

Explores the Hilbert space and holography of information in de Sitter quantum gravity, covering topics such as Wheeler-DeWitt equation, cosmological correlators, and Higuchi states.

This paper deals with the initial value problem for a semilinear wave equation on a bounded domain and solutions are required to vanish on the boundary of this domain. The essential feature of the situation considered here is that the ellipticity of the sp ...

2024Lenka Zdeborová, Freya Behrens, Barbora Hudcová

The cavity method is one of the cornerstones of the statistical physics of disordered systems such as spin glasses and other complex systems. It is able to analytically and asymptotically exactly describe the equilibrium properties of a broad range of mode ...

2023Sara Bonetti, Shashank Kumar Anand

The objective of this comment is to correct two sets of statements in Litwin et al. (2022, https://doi.org/10.1029/2021JF006239), which consider our research work (Bonetti et al., 2018, https://doi.org/10.1098/rspa.2017.0693; Bonetti et al., 2020, https:// ...

2022