Summary
In chemistry, the molar mass (M) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of said compound. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an average of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on Earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities. The molecular mass and formula mass are commonly used as a synonym of molar mass, particularly for molecular compounds; however, the most authoritative sources define it differently. The difference is that molecular mass is the mass of one specific particle or molecule, while the molar mass is an average over many particles or molecules. The formula weight is a synonym of molar mass that is frequently used for non-molecular compounds, such as ionic salts. The molar mass is an intensive property of the substance, that does not depend on the size of the sample. In the International System of Units (SI), the coherent unit of molar mass is kg/mol. However, for historical reasons, molar masses are almost always expressed in g/mol. The mole was defined in such a way that the molar mass of a compound, in g/mol, is numerically equal to the average mass of one molecule, in daltons. It was exactly equal before the redefinition of the mole in 2019, and is now only approximately equal, but the difference is negligible for all practical purposes. Thus, for example, the average mass of a molecule of water is about 18.0153 daltons, and the molar mass of water is about 18.0153 g/mol. For chemical elements without isolated molecules, such as carbon and metals, the molar mass is computed dividing by the number of moles of atoms instead.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.