Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Filling materials may exist in all scales of rock fractures, not only influencing seismic wave attenuation, but controlling rock mass instability. The objective of this study is to experimentally investigate the seismic response of rock fractures filled wi ...
Due to the presence of joints, waves are greatly attenuated when propagating across rock masses. Zhu et al. (2011) (Normally incident wave propagation across a joint set with virtual wave source method. J. Appl. Geophys.73, 283-288.) studied normally incid ...
The purpose of this study is to analytically predict and to experimentally investigate the seismic response of adjacent filled parallel rock fractures with dissimilar properties (e.g., fracture thickness and stiffness). The time-domain recursive method is ...
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our FE-HMM captures long-time dispersive effects of the true solution at a cost similar t ...
We study the influence of the band structure on the symmetry and superconducting transition temperature in the (solvable) weak-coupling limit of the repulsive Hubbard model. Among other results we find that (1) as a function of increasing nematicity, start ...
We investigate the diffusive motion of micron-sized spherical tracers in a viscoelastic actin filament network over the time span of 8 orders of magnitude using optical-tweezers single-particle tracking. The hydrodynamic interactions of a tracer with the s ...
The physical mechanism of elastic wave propagation through granular solids is investigated. Based on the symmetry of a one dimensional chain of spheres, spherical surface waves are considered to be responsible for the energy transport. A simple mathematica ...
We set the theoretical basis for scattering cancellation and cloaking of quantum particle waves. We discuss the possibility of cloaking a spherical object from an impinging matter wave by using a homogeneous monolayer with properly tailored effective mass ...
An Eulerian two-phase flow model (air-water) was used to simulate nearshore hydrodynamic processes driven by wave motion. The flow field was computed with the Reynolds-Averaged Navier-Stokes equations in conjunction with the Volume-Of-Fluid method and the ...
Traveling wave generation in a ring type stator has been studied. The basic working principle to create traveling wave has been modelled by the superposition of two orthogonal standing waves. Theoretical analysis shows that the length to radius ratio affec ...