Predicate variableIn mathematical logic, a predicate variable is a predicate letter which functions as a "placeholder" for a relation (between terms), but which has not been specifically assigned any particular relation (or meaning). Common symbols for denoting predicate variables include capital roman letters such as , and , or lower case roman letters, e.g., . In first-order logic, they can be more properly called metalinguistic variables.
Sentence (mathematical logic)In mathematical logic, a sentence (or closed formula) of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
Non-classical logicNon-classical logics (and sometimes alternative logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth. Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well.
Theory (mathematical logic)In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem.
Structure (mathematical logic)In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures of first-order theories with no relation symbols. Model theory has a different scope that encompasses more arbitrary first-order theories, including foundational structures such as models of set theory.
Logical constantIn logic, a logical constant or constant symbol of a language is a symbol that has the same semantic value under every interpretation of . Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic.
LogicLogic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Substitution (logic)A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a substitution instance, or instance for short, of the original expression. Where ψ and φ represent formulas of propositional logic, ψ is a substitution instance of φ if and only if ψ may be obtained from φ by substituting formulas for symbols in φ, replacing each occurrence of the same symbol by an occurrence of the same formula.
Kripke semanticsKripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise').
Non-logical symbolIn logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols (sometimes also called logical and non-logical constants). The non-logical symbols of a language of first-order logic consist of predicates and individual constants. These include symbols that, in an interpretation, may stand for individual constants, variables, functions, or predicates.