Summary
Empirical risk minimization (ERM) is a principle in statistical learning theory which defines a family of learning algorithms and is used to give theoretical bounds on their performance. The core idea is that we cannot know exactly how well an algorithm will work in practice (the true "risk") because we don't know the true distribution of data that the algorithm will work on, but we can instead measure its performance on a known set of training data (the "empirical" risk). Consider the following situation, which is a general setting of many supervised learning problems. We have two spaces of objects and and would like to learn a function (often called hypothesis) which outputs an object , given . To do so, we have at our disposal a training set of examples where is an input and is the corresponding response that we wish to get from . To put it more formally, we assume that there is a joint probability distribution over and , and that the training set consists of instances drawn i.i.d. from . Note that the assumption of a joint probability distribution allows us to model uncertainty in predictions (e.g. from noise in data) because is not a deterministic function of , but rather a random variable with conditional distribution for a fixed . We also assume that we are given a non-negative real-valued loss function which measures how different the prediction of a hypothesis is from the true outcome The risk associated with hypothesis is then defined as the expectation of the loss function: A loss function commonly used in theory is the 0-1 loss function: . The ultimate goal of a learning algorithm is to find a hypothesis among a fixed class of functions for which the risk is minimal: For classification problems, the Bayes classifier is defined to be the classifier minimizing the risk defined with the 0–1 loss function. In general, the risk cannot be computed because the distribution is unknown to the learning algorithm (this situation is referred to as agnostic learning).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
EE-559: Deep learning
This course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
Show more
Related lectures (44)
Mathematics of Data: Deep Learning Introduction
Covers a mathematical introduction to deep learning, including challenges, power of linear classifiers, model scaling, and theoretical aspects.
Support Vector Machines: Theory and Applications
Explores Support Vector Machines theory, applications, classification, and optimization techniques in machine learning.
Deep Learning: Theory and Applications
Explores the mathematics of deep learning, neural networks, and their applications in computer vision tasks, addressing challenges and the need for robustness.
Show more
Related publications (65)
Related concepts (3)
Linear classifier
In the field of machine learning, the goal of statistical classification is to use an object's characteristics to identify which class (or group) it belongs to. A linear classifier achieves this by making a classification decision based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically presented to the machine in a vector called a feature vector.
Supervised learning
Supervised learning (SL) is a paradigm in machine learning where input objects (for example, a vector of predictor variables) and a desired output value (also known as human-labeled supervisory signal) train a model. The training data is processed, building a function that maps new data on expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way (see inductive bias).
Support vector machine
In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997) SVMs are one of the most robust prediction methods, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974).