Summary
Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. Earlier theories by Alfred Wegener and Alexander du Toit of continental drift postulated that continents in motion "plowed" through the fixed and immovable seafloor. The idea that the seafloor itself moves and also carries the continents with it as it spreads from a central rift axis was proposed by Harold Hammond Hess from Princeton University and Robert Dietz of the U.S. Naval Electronics Laboratory in San Diego in the 1960s. The phenomenon is known today as plate tectonics. In locations where two plates move apart, at mid-ocean ridges, new seafloor is continually formed during seafloor spreading. Seafloor spreading helps explain continental drift in the theory of plate tectonics. When oceanic plates diverge, tensional stress causes fractures to occur in the lithosphere. The motivating force for seafloor spreading ridges is tectonic plate slab pull at subduction zones, rather than magma pressure, although there is typically significant magma activity at spreading ridges. Plates that are not subducting are driven by gravity sliding off the elevated mid-ocean ridges a process called ridge push. At a spreading center, basaltic magma rises up the fractures and cools on the ocean floor to form new seabed. Hydrothermal vents are common at spreading centers. Older rocks will be found farther away from the spreading zone while younger rocks will be found nearer to the spreading zone. Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. (The rate at which new oceanic lithosphere is added to each tectonic plate on either side of a mid-ocean ridge is the spreading half-rate and is equal to half of the spreading rate). Spreading rates determine if the ridge is fast, intermediate, or slow. As a general rule, fast ridges have spreading (opening) rates of more than 90 mm/year.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.