Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge.
Earlier theories by Alfred Wegener and Alexander du Toit of continental drift postulated that continents in motion "plowed" through the fixed and immovable seafloor. The idea that the seafloor itself moves and also carries the continents with it as it spreads from a central rift axis was proposed by Harold Hammond Hess from Princeton University and Robert Dietz of the U.S. Naval Electronics Laboratory in San Diego in the 1960s. The phenomenon is known today as plate tectonics. In locations where two plates move apart, at mid-ocean ridges, new seafloor is continually formed during seafloor spreading.
Seafloor spreading helps explain continental drift in the theory of plate tectonics. When oceanic plates diverge, tensional stress causes fractures to occur in the lithosphere. The motivating force for seafloor spreading ridges is tectonic plate slab pull at subduction zones, rather than magma pressure, although there is typically significant magma activity at spreading ridges. Plates that are not subducting are driven by gravity sliding off the elevated mid-ocean ridges a process called ridge push. At a spreading center, basaltic magma rises up the fractures and cools on the ocean floor to form new seabed. Hydrothermal vents are common at spreading centers. Older rocks will be found farther away from the spreading zone while younger rocks will be found nearer to the spreading zone.
Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. (The rate at which new oceanic lithosphere is added to each tectonic plate on either side of a mid-ocean ridge is the spreading half-rate and is equal to half of the spreading rate). Spreading rates determine if the ridge is fast, intermediate, or slow. As a general rule, fast ridges have spreading (opening) rates of more than 90 mm/year.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation.
The San Andreas Fault is a continental right-lateral strike-slip transform fault that extends roughly through the Californias. It forms the tectonic boundary between the Pacific Plate and the North American Plate. Traditionally, for scientific purposes, the fault has been classified into three main segments (northern, central, and southern), each with different characteristics and a different degree of earthquake risk. The average slip rate along the entire fault ranges from per year.
Orogeny is a mountain building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism.
Explores microbial processes in the sulfur cycle and energy conservation mechanisms.
Delves into microbial methane cycling, covering methanogens, methanogenesis, methane oxidation, and microbial interactions in anaerobic environments.
The seismic assessment of existing unreinforced masonry buildings to determine their vulnerability is a critical issue for all earthquake-prone locations, and Switzerland is no exception. As a result, a thorough examination of the behaviour of masonry stru ...
Water diversions from rivers and torrents for anthropic uses of the resource alter the natural flow regime. As a measure, environmental flows have been prescribed and often are enforced by law to follow policies (e.g., minimal flow, proportional redistribu ...
Diabete is a disease which is spreading faster than ever, impacting now a larger population. Patients suffering from this disease need the injection of insulin to control extracellular sugar levels. Pharmaceutical companies developed injector pens to allow ...