Incompatible elementIn petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals of which it is included. It is defined by the partition coefficient between rock-forming minerals and melt being much smaller than 1. During the fractional crystallization of magma and magma generation by the partial melting of the Earth's mantle and crust, elements that have difficulty in entering cation sites of the minerals are concentrated in the melt phase of magma (liquid phase).
Lunar mareThe lunar maria (ˈmɑːri.ə ; mare ˈmɑːreɪ ) are large, dark, basaltic plains on Earth's Moon, formed by ancient asteroid impacts on the far side on the Moon that triggered volcanic activity on the opposite (near) side. They were dubbed maria, by early astronomers who mistook them for actual seas. They are less reflective than the "highlands" as a result of their iron-rich composition, and hence appear dark to the naked eye. The maria cover about 16% of the lunar surface, mostly on the side visible from Earth.
Iapetus (moon)Iapetus (aɪˈæpətəs) is a moon of Saturn. With an estimated diameter of 1,469 km, it is the third-largest moon of Saturn and the eleventh-largest in the Solar System. Named after the Titan Iapetus, the moon was discovered in 1671 by Giovanni Domenico Cassini. A relatively low-density body made up mostly of ice, Iapetus is home to several distinctive and unusual features, such as a striking difference in coloration between its leading hemisphere, which is dark, and its trailing hemisphere, which is bright, as well as a massive equatorial ridge running three-quarters of the way around the moon.
Partial meltingPartial melting is the phenomenon that occurs when a rock is subjected to temperatures high enough to cause certain minerals to melt, but not all of them. Partial melting is an important part of the formation of all igneous rocks and some metamorphic rocks (e.g., migmatites), as evidenced by a multitude of geochemical, geophysical and petrological studies. The parameters that influence partial melting include the composition of the source rock, the pressure and temperature of the environment, and the availability of water or other fluids.
Planetary-mass objectA planetary-mass object (PMO), planemo, or planetary body is, by geophysical definition of celestial objects, any celestial object massive enough to achieve hydrostatic equilibrium (to be rounded under its own gravity), but not enough to sustain core fusion like a star. The purpose of this term is to classify together a broader range of celestial objects than 'planet', since many objects similar in geophysical terms do not conform to conventional expectations for a planet. Planetary-mass objects can be quite diverse in origin and location.
Upper mantleThe upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from approximately at the upper boundary with the crust to approximately at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending upon depth.