Summary
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known. When the star's or planet's net emissivity in the relevant wavelength band is less than unity (less than that of a black body), the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, including greenhouse effect. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (FBol) as the star and is defined according to the Stefan–Boltzmann law FBol = σTeff4. Notice that the total (bolometric) luminosity of a star is then L = 4πR2σTeff4, where R is the stellar radius. The definition of the stellar radius is obviously not straightforward. More rigorously the effective temperature corresponds to the temperature at the radius that is defined by a certain value of the Rosseland optical depth (usually 1) within the stellar atmosphere. The effective temperature and the bolometric luminosity are the two fundamental physical parameters needed to place a star on the Hertzsprung–Russell diagram. Both effective temperature and bolometric luminosity depend on the chemical composition of a star. The effective temperature of the Sun is around 5,780K. The nominal value defined by the International Astronomical Union for use as a unit of measure of temperature is 5,772K. Stars have a decreasing temperature gradient, going from their central core up to the atmosphere. The "core temperature" of the Sun—the temperature at the centre of the Sun where nuclear reactions take place—is estimated to be 15,000,000 K. The color index of a star indicates its temperature from the very cool—by stellar standards—red M stars that radiate heavily in the infrared to the very hot blue O stars that radiate largely in the ultraviolet.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
MSE-209: Transfer phenomena in materials science
Ce cours porte sur le transfert de la chaleur par conduction, convection et rayonnement, ainsi que sur la diffusion à l'état solide. D'après les règles phénoménologiques (Equations de Fourrier et Fick
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Show more
Related lectures (33)
Solar Intensity and Earth Temperature
Explores solar intensity near Earth and Earth's temperature through practical exercises.
Astrophysics: Sunspots and Solar Activity
Explores sunspots, the solar cycle, and magnetic fields on the Sun, including the 11-year cycle and the Hale's and Joy's laws.
Polymer Mechanochemistry: From Bonds to Materials
Explores polymer mechanochemistry, focusing on modulating chemical transformations in polymers using mechanical forces, covering topics like breaking bonds, mechanophores, and force-responsive materials.
Show more
Related publications (154)
Related concepts (29)
Limb darkening
Limb darkening is an optical effect seen in stars (including the Sun) and planets, where the central part of the disk appears brighter than the edge, or limb. Its understanding offered early solar astronomers an opportunity to construct models with such gradients. This encouraged the development of the theory of radiative transfer. Optical depth, a measure of the opacity of an object or part of an object, combines with effective temperature gradients inside the star to produce limb darkening.
Chemically peculiar star
In astrophysics, chemically peculiar stars (CP stars) are stars with distinctly unusual metal abundances, at least in their surface layers. Chemically peculiar stars are common among hot main-sequence (hydrogen-burning) stars. These hot peculiar stars have been divided into 4 main classes on the basis of their spectra, although two classification systems are sometimes used: non-magnetic metallic-lined (Am, CP1) magnetic (Ap, CP2) non-magnetic mercury-manganese (HgMn, CP3) helium-weak (He-weak, CP4).
Solar luminosity
The solar luminosity () is a unit of radiant flux (power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun. One nominal solar luminosity is defined by the International Astronomical Union to be 3.828e26W. The Sun is a weakly variable star, and its actual luminosity therefore fluctuates. The major fluctuation is the eleven-year solar cycle (sunspot cycle) that causes a quasi-periodic variation of about ±0.
Show more