Concept

Viola–Jones object detection framework

The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. The algorithm is efficient for its time, able to detect faces in 384 by 288 pixel images at 15 frames per second on a conventional 700 MHz Intel Pentium III. It is also robust, achieving high precision and recall. While it has lower accuracy than more modern methods such as convolutional neural network, its efficiency and compact size (only around 50k parameters, compared to millions of parameters for typical CNN like DeepFace) means it is still used in cases with limited computational power. For example, in the original paper, they reported that this face detector could run on the Compaq iPAQ at 2 fps (this device has a low power StrongARM without floating point hardware). Face detection is a binary classification problem combined with a localization problem: given a picture, decide whether it contains faces, and construct bounding boxes for the faces. To make the task more manageable, the Viola–Jones algorithm only detects full view (no occlusion), frontal (no head-turning), upright (no rotation), well-lit, full-sized (occupying most of the frame) faces in fixed-resolution images. The restrictions are not as severe as they appear, as one can normalize the picture to bring it closer to the requirements for Viola-Jones. any image can be scaled to a fixed resolution for a general picture with a face of unknown size and orientation, one can perform blob detection to discover potential faces, then scale and rotate them into the upright, full-sized position. the brightness of the image can be corrected by white balancing. the bounding boxes can be found by sliding a window across the entire picture, and marking down every window that contains a face. This would generally detect the same face multiple times, for which duplication removal methods, such as non-maximal suppression, can be used.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.