Concept

List of honey bee pheromones

The pheromones of the honey bee are mixtures of chemical substances released by individual bees into the hive or environment that cause changes in the physiology and behaviour of other bees. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems found in nature, possessing 15 known glands that produce an array of compounds. These chemical messengers secreted by a queen, drone, worker bee or laying worker bee to elicit a response in other bees. The chemical messages are received by the bee's antenna and other body parts. They are produced as a volatile or non-volatile liquid and transmitted by direct contact as a liquid or vapor. Honey bee pheromones can be grouped into releaser pheromones which temporarily affect the recipient's behavior, and primer pheromones which have a long-term effect on the physiology of the recipient. Releaser pheromones trigger an almost immediate behavioral response from the receiving bee. Under certain conditions a pheromone can act as both a releaser and primer pheromone. The pheromones may either be single chemicals or a complex mixture of numerous chemicals in different percentages. Two main alarm pheromones have been identified in honeybee workers. One is released by the Koschevnikov gland, near the sting shaft, and consists of more than 40 chemical compounds, including isopentyl acetate (IPA), butyl acetate, 1-hexanol, n-butanol, 1-octanol, hexyl acetate, octyl acetate, n-pentyl acetate and 2-nonanol. These chemical compounds have low molecular weights, are highly volatile, and appear to be the least specific of all pheromones. Alarm pheromones are released when a bee stings another animal, and attract other bees to the location and causes the other bees to behave defensively, i.e. sting or charge. The alarm pheromone emitted when a bee stings another animal smells like bananas. Smoke can mask the bees' alarm pheromone. The other alarm pheromone is released by the mandibular glands and consists of 2-heptanone, which is also a highly volatile substance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.