Concept

Linear complementarity problem

Summary
In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968. Formulation Given a real matrix M and vector q, the linear complementarity problem LCP(q, M) seeks vectors z and w which satisfy the following constraints:
  • w, z \geqslant 0, (that is, each component of these two vectors is non-negative)
  • z^Tw = 0 or equivalently \sum\nolimits_i w_i z_i = 0. This is the complementarity condition, since it implies that, for all i, at most one of w_i and z_i can be positive.
  • w = Mz + q
A sufficient condition for existence and uniqueness of a solution to this problem is that M be symmetric positive-definite. If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading