Concept

# Power rule

Summary
In calculus, the power rule is used to differentiate functions of the form f(x) = x^r, whenever r is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives. Statement of the power rule Let f be a function satisfying f(x)=x^r for all x, where r \in \mathbb{R}. Then, :f'(x) = rx^{r-1} , . The power rule for integration states that :\int! x^r , dx=\frac{x^{r+1}}{r+1}+C for any real number r \neq -1. It can be derived by inverting the power rule for differentiation. In this equation C is any constant. Proofs Proof for real exponents To start, we should choose a working definition of the value of f(x) = x^r, where r
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units