Concept

Explorer 4

Summary
Explorer 4 was an American satellite launched on 26 July 1958. It was instrumented by Dr. James van Allen's group. The Department of Defense's Advanced Research Projects Agency (ARPA) had initially planned two satellites for the purposes of studying the Van Allen radiation belts and the effects of nuclear explosions upon these belts (and the Earth's magnetosphere in general), however Explorer 4 was the only such satellite launched as the other, Explorer 5, suffered launch failure. Explorer 4 was a cylindrically shaped satellite instrumented to make the first detailed measurements of charged particles (protons and electrons) trapped in the terrestrial radiation belts. The launch vehicle was a Juno I, a variant of the three-stage Jupiter-C with an added fourth propulsive stage, which in this case was the Explorer 4. The first stage was an upgraded Redstone liquid-fueled rocket. The second stage comprised a cluster of eleven Sergeant solid-fuel rocket motors and the third stage held three Sergeants. The booster was equipped to spin the fourth stage in increments, leading to a final rate of 750 rpm about its long axis. The purpose of this experiment was to extend the first measurements of the trapped radiation belt discovered with Explorer 1 and Explorer 3 and to provide measurements of artificially injected electrons from the three high-altitude Argus nuclear detonations. Four separate radiation detectors were used in the experiment: a shielded directional plastic scintillation counter sensitive to electrons (E>700 keV) and protons (E>10 MeV), a shielded directional cesium iodide scintillation counter sensitive to electrons (E>20 keV) and protons (E>400 keV), an omnidirectional Anton type 302 Geiger–Müller (GM) counter sensitive to electrons (E>3 MeV) and protons (E>30 MeV), and a shielded omnidirectional Anton type 302 Geiger-Müller tube sensitive to electrons (E>5 MeV) and protons (E>40 MeV). The plastic scintillation counter and the cesium iodide (CsI) scintillation counter were each viewed by a separate Photomultiplier tube.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.