Summary
Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. This was first introduced by Burnaby Munson and Frank H. Field in 1966. This technique is a branch of gaseous ion-molecule chemistry. Reagent gas molecules (often methane or ammonia) are ionized by electron ionization to form reagent ions, which subsequently react with analyte molecules in the gas phase to create analyte ions for analysis by mass spectrometry. Negative chemical ionization (NCI), charge-exchange chemical ionization, atmospheric-pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) are some of the common variants of the technique. CI mass spectrometry finds general application in the identification, structure elucidation and quantitation of organic compounds as well as some utility in biochemical analysis. Samples to be analyzed must be in vapour form, or else (in the case of liquids or solids), must be vapourized before introduction into the source. The chemical ionization process generally imparts less energy to an analyte molecule than does electron impact (EI) ionization, resulting in less fragmentation and usually a simpler spectrum. The amount of fragmentation, and therefore the amount of structural information produced by the process can be controlled to some degree by selection of the reagent ion. In addition to some characteristic fragment ion peaks, a CI spectrum usually has an identifiable protonated molecular ion peak [M+1]+, allowing determination of the molecular mass. CI is thus useful as an alternative technique in cases where EI produces excessive fragmentation of the analyte, causing the molecular-ion peak to be weak or completely absent. The CI source design for a mass spectrometer is very similar to that of the EI source. To facilitate the reactions between the ions and molecules, the chamber is kept relatively gas tight at a pressure of about 1 torr. Electrons are produced externally to the source volume (at a lower pressure of 10−4 torr or below) by heating a metal filament which is made of tungsten, rhenium, or iridium.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.