Summary
A millisecond pulsar (MSP) is a pulsar with a rotational period less than about 10 milliseconds. Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading theory for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system. For this reason, millisecond pulsars are sometimes called recycled pulsars. Millisecond pulsars are thought to be related to low-mass X-ray binary systems. It is thought that the X-rays in these systems are emitted by the accretion disk of a neutron star produced by the outer layers of a companion star that has overflowed its Roche lobe. The transfer of angular momentum from this accretion event can theoretically increase the rotation rate of the pulsar to hundreds of times per second, as is observed in millisecond pulsars. There has been recent evidence that the standard evolutionary model fails to explain the evolution of all millisecond pulsars, especially young millisecond pulsars with relatively high magnetic fields, e.g. PSR B1937+21. Bülent Kiziltan and S. E. Thorsett (UCSC) showed that different millisecond pulsars must form by at least two distinct processes. But the nature of the other process remains a mystery. Many millisecond pulsars are found in globular clusters. This is consistent with the spin-up theory of their formation, as the extremely high stellar density of these clusters implies a much higher likelihood of a pulsar having (or capturing) a giant companion star. Currently there are approximately 130 millisecond pulsars known in globular clusters. The globular cluster Terzan 5 contains 37 of these, followed by 47 Tucanae with 22 and M28 and M15 with 8 pulsars each. Millisecond pulsars, which can be timed with high precision, have a stability comparable to atomic-clock-based time standards when averaged over decades. This also makes them very sensitive probes of their environments.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.