A fire-control system (FCS) is a number of components working together, usually a gun data computer, a director and radar, which is designed to assist a ranged weapon system to target, track, and hit a target. It performs the same task as a human gunner firing a weapon, but attempts to do so faster and more accurately.
Ship gun fire-control system
The original fire-control systems were developed for ships.
The early history of naval fire control was dominated by the engagement of targets within visual range (also referred to as direct fire). In fact, most naval engagements before 1800 were conducted at ranges of .
Even during the American Civil War, the famous engagement between and was often conducted at less than range.
Rapid technical improvements in the late 19th century greatly increased the range at which gunfire was possible. Rifled guns of much larger size firing explosive shells of lighter relative weight (compared to all-metal balls) so greatly increased the range of the guns that the main problem became aiming them while the ship was moving on the waves. This problem was solved with the introduction of the gyroscope, which corrected this motion and provided sub-degree accuracies. Guns were now free to grow to any size, and quickly surpassed calibre by the 1890s. These guns were capable of such great range that the primary limitation was seeing the target, leading to the use of high masts on ships.
Another technical improvement was the introduction of the steam turbine which greatly increased the performance of the ships. Earlier screw-powered capital ships were capable of perhaps 16 knots, but the first large turbine ships were capable of over 20 knots. Combined with the long range of the guns, this meant that the target ship could move a considerable distance, several ship lengths, between the time the shells were fired and landed. One could no longer eyeball the aim with any hope of accuracy. Moreover, in naval engagements it is also necessary to control the firing of several guns at once.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A gun turret (or simply turret) is a mounting platform from which weapons can be fired that affords protection, visibility and ability to turn and aim. A modern gun turret is generally a rotatable weapon mount that houses the crew or mechanism of a projectile-firing weapon and at the same time lets the weapon be aimed and fired in some degree of azimuth and elevation (cone of fire). Rotating gun turrets protect the weapon and its crew as they rotate.
The Norden Mk. XV, known as the Norden M series in U.S. Army service, is a bombsight that was used by the United States Army Air Forces (USAAF) and the United States Navy during World War II, and the United States Air Force in the Korean and the Vietnam Wars. It was an early tachometric design that directly measured the aircraft's ground speed and direction, which older bombsights could only estimate with lengthy manual procedures.
Naval artillery is artillery mounted on a warship, originally used only for naval warfare and then subsequently used for more specialized roles in surface warfare such as naval gunfire support (NGFS) and anti-aircraft warfare (AAW) engagements. The term generally refers to tube-launched projectile-firing weapons and excludes self-propelled projectiles such as torpedoes, rockets, and missiles and those simply dropped overboard such as depth charges and naval mines. The idea of ship-borne artillery dates back to the classical era.
Ce cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel
The Tokamak a` Configuration Variable (TCV) coil converters are fed, during the plasma pulse, by a flywheel generator (FG) providing the AC voltages few seconds before the plasma pulse. The synchronization with the 120 Hz frequency delivered by the FG, var ...
ELSEVIER SCIENCE SA2023
This thesis presents an efficient and extensible numerical software framework for real-time model-based control. We are motivated by complex and challenging mechatronic applications spanning from flight control of fixed-wing aircraft and thrust vector cont ...
EPFL2022
The tokamak in Lausanne, Switzerland (TCV), has been designed to investigate highly elongated plasmas. The elongation improves performance but also introduces a vertical position instability which requires active feedback control to stabilize. The potentia ...