Quantum imaging is a new sub-field of quantum optics that exploits quantum correlations such as quantum entanglement of the electromagnetic field in order to image objects with a resolution or other imaging criteria that is beyond what is possible in classical optics. Examples of quantum imaging are quantum ghost imaging, quantum lithography, imaging with undetected photons, sub-shot-noise imaging, and quantum sensing. Quantum imaging may someday be useful for storing patterns of data in quantum computers and transmitting large amounts of highly secure encrypted information. Quantum mechanics has shown that light has inherent “uncertainties” in its features, manifested as moment-to-moment fluctuations in its properties. Controlling these fluctuations—which represent a sort of “noise”—can improve detection of faint objects, produce better amplified images, and allow workers to more accurately position laser beams.
Quantum imaging can be done in different methods. One method uses scattered light from a free-electron laser. This method converts the light to quasi-monochromatic pseudo-thermal light. Another method known as interaction-free imaging is used to locate an object without absorbing photons. One more method of quantum imaging is known as ghost imaging. This process uses a photon pair to define an image. The image is created by correlations between the two photons, the stronger the correlations the greater the resolution.
Quantum lithography is a type of quantum imaging that focuses on aspects of photons to surpass the limits of classical lithography. Using entangled light, the effective resolution becomes a factor of N lesser than the Rayleigh limit of . Another study determines that waves created by Raman pulses have narrower peaks and have a width that is four times smaller than the diffraction limit in classical lithography. Quantum lithography has potential applications in communications and computing.
Another type of quantum imaging is called quantum metrology, or quantum sensing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.