Possibility theory is a mathematical theory for dealing with certain types of uncertainty and is an alternative to probability theory. It uses measures of possibility and necessity between 0 and 1, ranging from impossible to possible and unnecessary to necessary, respectively. Professor Lotfi Zadeh first introduced possibility theory in 1978 as an extension of his theory of fuzzy sets and fuzzy logic. Didier Dubois and Henri Prade further contributed to its development. Earlier, in the 1950s, economist G. L. S. Shackle proposed the min/max algebra to describe degrees of potential surprise.
For simplicity, assume that the universe of discourse Ω is a finite set. A possibility measure is a function from to [0, 1] such that:
Axiom 1:
Axiom 2:
Axiom 3: for any disjoint subsets and .
It follows that, like probability on finite probability spaces, the possibility measure is determined by its behavior on singletons:
Axiom 1 can be interpreted as the assumption that Ω is an exhaustive description of future states of the world, because it means that no belief weight is given to elements outside Ω.
Axiom 2 could be interpreted as the assumption that the evidence from which was constructed is free of any contradiction. Technically, it implies that there is at least one element in Ω with possibility 1.
Axiom 3 corresponds to the additivity axiom in probabilities. However there is an important practical difference. Possibility theory is computationally more convenient because Axioms 1–3 imply that:
for any subsets and .
Because one can know the possibility of the union from the possibility of each component, it can be said that possibility is compositional with respect to the union operator. Note however that it is not compositional with respect to the intersection operator. Generally:
When Ω is not finite, Axiom 3 can be replaced by:
For all index sets , if the subsets are pairwise disjoint,
Whereas probability theory uses a single number, the probability, to describe how likely an event is to occur, possibility theory uses two concepts, the possibility and the necessity of the event.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Upper and lower probabilities are representations of imprecise probability. Whereas probability theory uses a single number, the probability, to describe how likely an event is to occur, this method uses two numbers: the upper probability of the event and the lower probability of the event. Because frequentist statistics disallows metaprobabilities, frequentists have had to propose new solutions. Cedric Smith and Arthur Dempster each developed a theory of upper and lower probabilities.
Imprecise probability generalizes probability theory to allow for partial probability specifications, and is applicable when information is scarce, vague, or conflicting, in which case a unique probability distribution may be hard to identify. Thereby, the theory aims to represent the available knowledge more accurately. Imprecision is useful for dealing with expert elicitation, because: People have a limited ability to determine their own subjective probabilities and might find that they can only provide an interval.
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory.
Introduces key concepts in probability and statistics, illustrating their application through various examples and emphasizing the importance of mathematical language in understanding the universe.
Dempster-Shafer data fusion can enhance travel time estimation for motorists and traffic managers. In this paper, travel time data from inductive loop road sensors and toll collection stations are merged through Dempster-Shafer inference to generate an imp ...
National Academy of Sciences2009
The probability of detecting technosignatures (i.e., evidence of technological activity beyond Earth) increases with their longevity, or the time interval over which they manifest. Therefore, the assumed distribution of longevities has some bearing on the ...