Transcortical sensory aphasia (TSA) is a kind of aphasia that involves damage to specific areas of the temporal lobe of the brain, resulting in symptoms such as poor auditory comprehension, relatively intact repetition, and fluent speech with semantic paraphasias present. TSA is a fluent aphasia similar to Wernicke's aphasia (receptive aphasia), with the exception of a strong ability to repeat words and phrases. The person may repeat questions rather than answer them ("echolalia").
In all of these ways, TSA is very similar to a more commonly known language disorder, receptive aphasia. However, transcortical sensory aphasia differs from receptive aphasia in that patients still have intact repetition and exhibit echolalia, or the compulsive repetition of words. Transcortical sensory aphasia cannot be diagnosed through brain imaging techniques such as functional magnetic resonance imaging (fMRI), as the results are often difficult to interpret. Therefore, clinicians rely on language assessments and observations to determine if a patient presents with the characteristics of TSA. Patients diagnosed with TSA have shown partial recovery of speech and comprehension after beginning speech therapy. Speech therapy methods for patients with any subtype of aphasia are based on the principles of learning and neuroplasticity. Clinical research on TSA is limited because it occurs so infrequently in patients with aphasia that it is very difficult to perform systematic studies.
TSA should not be confused with transcortical motor aphasia (TMA), which is characterized by nonfluent speech output, with good comprehension and repetition. Patients with TMA have impaired writing skills, difficulty speaking and difficulty maintaining a clear thought process. Furthermore, TMA is caused by lesions in cortical motor areas of the brain as well as lesions in the anterior portion of the basal ganglia, and can be seen in patients with expressive aphasia.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In neuroanatomy, the arcuate fasciculus (AF; ) is a bundle of axons that generally connects the Broca's area and the Wernicke's area in the brain. It is an association fiber tract connecting caudal temporal cortex and inferior frontal lobe. The arcuate fasciculus is a white matter tract that runs parallel to the superior longitudinal fasciculus. Due to their proximity, some researchers refer to them interchangeably. They can be distinguished by the location and function of their endpoints in the frontal cortex.
Speech-language pathology (or speech and language pathology) is a field of healthcare expertise practiced globally. Speech-language pathology (SLP) specializes in the evaluation, diagnosis, treatment, and prevention of communication disorders (speech and language impairments), cognitive-communication disorders, voice disorders, pragmatic disorders, social communication difficulties and swallowing disorder across the lifespan.
Conduction aphasia, also called associative aphasia, is an uncommon form of difficulty in speaking (aphasia). It is caused by damage to the parietal lobe of the brain. An acquired language disorder, it is characterised by intact auditory comprehension, coherent (yet paraphasic) speech production, but poor speech repetition. Affected people are fully capable of understanding what they are hearing, but fail to encode phonological information for production.
Stroke is the main source of long-lasting disability, affecting dominantly motor functions. The extent and course of recovery are highly heterogeneous between patients, with a minority of patients fully recovering from their initial impairments, leaving 85 ...
The presence of white matter lesions in patients with cerebral small vessel disease (SVD) is among the main causes of cognitive decline. We investigated the relation between white matter hyperintensity (WMH) locations and executive and language abilities i ...
2020
, , , ,
The spinal cord is the main interface between the brain and the periphery. It notably plays a central role in motor control, as spinal motoneurons activate skeletal muscles involved in voluntary movements. Yet, the spinal mechanisms underlying human moveme ...