Kite (geometry)In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.
Orthodiagonal quadrilateralIn Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other. A kite is an orthodiagonal quadrilateral in which one diagonal is a line of symmetry. The kites are exactly the orthodiagonal quadrilaterals that contain a circle tangent to all four of their sides; that is, the kites are the tangential orthodiagonal quadrilaterals.
Tangential polygonIn Euclidean geometry, a tangential polygon, also known as a circumscribed polygon, is a convex polygon that contains an inscribed circle (also called an incircle). This is a circle that is tangent to each of the polygon's sides. The dual polygon of a tangential polygon is a cyclic polygon, which has a circumscribed circle passing through each of its vertices. All triangles are tangential, as are all regular polygons with any number of sides. A well-studied group of tangential polygons are the tangential quadrilaterals, which include the rhombi and kites.
Nagel pointIn geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters. Given a triangle △ABC, let T_A, T_B, T_C be the extouch points in which the A-excircle meets line BC, the B-excircle meets line CA, and the C-excircle meets line AB, respectively. The lines AT_A, BT_B, CT_C concur in the Nagel point N of triangle △ABC.
Extended sideIn plane geometry, an extended side or sideline of a polygon is the line that contains one side of the polygon. The extension of a finite side into an infinite line arises in various contexts. In an obtuse triangle, the altitudes from the acute angled vertices intersect the corresponding extended base sides but not the base sides themselves. The excircles of a triangle, as well as the triangle's inconics that are not inellipses, are externally tangent to one side and to the other two extended sides.
Splitter (geometry)In Euclidean geometry, a splitter is a line segment through one of the vertices of a triangle (that is, a cevian) that bisects the perimeter of the triangle. They are not to be confused with cleavers, which also bisect the perimeter but instead emanate from the midpoint of one of the triangle's sides. The opposite endpoint of a splitter to the chosen triangle vertex lies at the point on the triangle's side where one of the excircles of the triangle is tangent to that side. This point is also called a splitting point of the triangle.
Centre (geometry)In geometry, a centre (British English) or center (American English); () of an object is a point in some sense in the middle of the object. According to the specific definition of center taken into consideration, an object might have no center. If geometry is regarded as the study of isometry groups, then a center is a fixed point of all the isometries that move the object onto itself. The center of a circle is the point equidistant from the points on the edge.
Cleaver (geometry)In geometry, a cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides. They are not to be confused with splitters, which also bisect the perimeter, but with an endpoint on one of the triangle's vertices instead of its sides. Each cleaver through the midpoint of one of the sides of a triangle is parallel to the angle bisectors at the opposite vertex of the triangle. The broken chord theorem of Archimedes provides another construction of the cleaver.
EquidistantA point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal. In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is their perpendicular bisector. In three dimensions, the locus of points equidistant from two given points is a plane, and generalising further, in n-dimensional space the locus of points equidistant from two points in n-space is an (n−1)-space.
Ex-tangential quadrilateralIn Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors.