Automatic target recognition (ATR) is the ability for an algorithm or device to recognize targets or other objects based on data obtained from sensors. Target recognition was initially done by using an audible representation of the received signal, where a trained operator who would decipher that sound to classify the target illuminated by the radar. While these trained operators had success, automated methods have been developed and continue to be developed that allow for more accuracy and speed in classification. ATR can be used to identify man made objects such as ground and air vehicles as well as for biological targets such as animals, humans, and vegetative clutter. This can be useful for everything from recognizing an object on a battlefield to filtering out interference caused by large flocks of birds on Doppler weather radar. Possible military applications include a simple identification system such as an IFF transponder, and is used in other applications such as unmanned aerial vehicles and cruise missiles. There has been more and more interest shown in using ATR for domestic applications as well. Research has been done into using ATR for border security, safety systems to identify objects or people on a subway track, automated vehicles, and many others. Target recognition has existed almost as long as radar. Radar operators would identify enemy bombers and fighters through the audio representation that was received by the reflected signal (see Radar in World War II). Target recognition was done for years by playing the baseband signal to the operator. Listening to this signal, trained radar operators can identify various pieces of information about the illuminated target, such as the type of vehicle it is, the size of the target, and can potentially even distinguish biological targets. However, there are many limitations to this approach. The operator must be trained for what each target will sound like, if the target is traveling at a high speed it may no longer be audible, and the human decision component makes the probability of error high.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.