A nanocrystal is a material particle having at least one dimension smaller than 100 nanometres, based on quantum dots (a nanoparticle) and composed of atoms in either a single- or poly-crystalline arrangement. The size of nanocrystals distinguishes them from larger crystals. For example, silicon nanocrystals can provide efficient light emission while bulk silicon does not and may be used for memory components. When embedded in solids, nanocrystals may exhibit much more complex melting behaviour than conventional solids and may form the basis of a special class of solids. They can behave as single-domain systems (a volume within the system having the same atomic or molecular arrangement throughout) that can help explain the behaviour of macroscopic samples of a similar material without the complicating presence of grain boundaries and other defects. Semiconductor nanocrystals having dimensions smaller than 10 nm are also described as quantum dots. The traditional method involves molecular precursors, which can include typical metal salts and a source of the anion. Most semiconducting nanomaterials feature chalcogenides (SS−, SeS−, TeS−) and pnicnides (P3−, As3−, Sb3−). Sources of these elements are the silylated derivatives such as bis(trimethylsilyl)sulfide (S(SiMe3)2 and tris(trimethylsilyl)phosphine (P(SiMe3)3). Some procedures use surfactants to solubilize the growing nanocrystals. In some cases, nanocrystals can exchange their elements with reagents through atomic diffusion. Nanocrystals made with zeolite are used to filter crude oil into diesel fuel at an ExxonMobil oil refinery in Louisiana at a cost less than conventional methods.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.