Kansan glaciationThe Kansan glaciation or Kansan glacial (see Pre-Illinoian) was a glacial stage and part of an early conceptual climatic and chronological framework composed of four glacial and interglacial stages. Kansan glaciation was used by early geomorphologists and Quaternary geologists to subdivide glacial and nonglacial deposits within north-central United States from youngest to oldest and are as follows: Wisconsin (glacial) Sangamonian (interglacial) Illinoian (glacial) Yarmouthian (interglacial) Kansan (glacial) Aftonian (interglacial) Nebraskan (glacial) As developed between 1894 and 1909, the Kansan Stage was based on a model that assumed that the Pleistocene deposits contained only two glacial tills and one volcanic ash bed within Nebraska and Kansas.
Polar desertPolar deserts are the regions of Earth that fall under an ice cap climate (EF under the Köppen classification). Despite rainfall totals low enough to normally classify as a desert, polar deserts are distinguished from true deserts ( () or () under the Köppen classification) by low annual temperatures and evapotranspiration. Most polar deserts are covered in ice sheets, ice fields, or ice caps, and they are also called white deserts. Polar deserts are one of two polar biomes, the other being Arctic tundra.
CirqueA cirque (siʁk; from the Latin word circus) is an amphitheatre-like valley formed by glacial erosion. Alternative names for this landform are corrie (from coire, meaning a pot or cauldron) and cwm; kʊm). A cirque may also be a similarly shaped landform arising from fluvial erosion. The concave shape of a glacial cirque is open on the downhill side, while the cupped section is generally steep. Cliff-like slopes, down which ice and glaciated debris combine and converge, form the three or more higher sides.
Holocene climatic optimumThe Holocene Climate Optimum (HCO) was a warm period that occurred in the interval roughly 9,500 to 5,500 years ago BP, with a thermal maximum around 8000 years BP. It has also been known by many other names, such as Altithermal, Climatic Optimum, Holocene Megathermal, Holocene Optimum, Holocene Thermal Maximum, Hypsithermal, and Mid-Holocene Warm Period. The warm period was followed by a gradual decline, of about 0.1 to 0.3 °C per millennium, until about two centuries ago.
Heinrich eventA Heinrich event is a natural phenomenon in which large groups of icebergs break off from the Laurentide Ice Sheet and traverse the Hudson Strait into the North Atlantic. First described by marine geologist Hartmut Heinrich, they occurred during five of the last seven glacial periods over the past 640,000 years. Heinrich events are particularly well documented for the last glacial period but notably absent from the penultimate glaciation.
Ice-sheet modelIn climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets, such as the Greenland ice sheet, the Antarctic ice sheet or the large ice sheets on the northern hemisphere during the last glacial period. They are used for a variety of purposes, from studies of the glaciation of Earth over glacial–interglacial cycles in the past to projections of ice-sheet decay under future global warming conditions. Beginning in the mid-18th Century, investigation into ice sheet behavior began.
Carbonate–silicate cycleThe carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism.
Glacial motionGlacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast (up to , observed on Jakobshavn Isbræ in Greenland) or slow ( on small glaciers or in the center of ice sheets), but is typically around . Glacier motion occurs from four processes, all driven by gravity: basal sliding, glacial quakes generating fractional movements of large sections of ice, bed deformation, and internal deformation.
Glacial lakeA glacial lake is a body of water with origins from glacier activity. They are formed when a glacier erodes the land and then melts, filling the depression created by the glacier. Near the end of the last glacial period, roughly 10,000 years ago, glaciers began to retreat. A retreating glacier often left behind large deposits of ice in hollows between drumlins or hills. As the ice age ended, these melted to create lakes. This is apparent in the Lake District in Northwestern England where post-glacial sediments are normally between 4 and 6 metres deep.
OverdeepeningOverdeepening is a characteristic of basins and valleys eroded by glaciers. An overdeepened valley profile is often eroded to depths which are hundreds of metres below the lowest continuous surface line (the thalweg) along a valley or watercourse. This phenomenon is observed under modern day glaciers, in salt-water fjords and fresh-water lakes remaining after glaciers melt, as well as in tunnel valleys which are partially or totally filled with sediment.