Concept

Wired logic connection

A wired logic connection is a logic gate that implements boolean algebra (logic) using only passive components such as diodes and resistors. A wired logic connection can create an AND or an OR gate. Limitations include the inability to create a NOT gate, the lack of amplification to provide level restoration, and its constant ohmic heating for most logic (particularly more than CMOS) which indirectly limits density of components and speed. Wired logic works by exploiting the high impedance of open collector outputs (and its variants: open emitter, open drain, or open source) by just adding a pull-up or pull-down resistor to a voltage source, or can be applied to push-pull outputs by using diode logic (with the disadvantage of incurring a diode drop voltage loss). See also: The wired AND connection is a form of AND gate. When using open collector or similar outputs (which can be identified by the ⎐ symbol in schematics), wired AND only requires a pull up resistor on the shared output wire. In this example, 5V is considered HIGH (true), and 0V is LOW (false). This gate can be easily extended with more inputs. When all inputs are HIGH, they all present high impedance, and the pull-up resistor pulls output voltage HIGH, but if any input is LOW, they pull the output LOW: When driving a load, the HIGH output is reduced by the pull-up's voltage drop, though the LOW output is almost 0V. But if diode logic is used, each input requires a diode, and the LOW output voltage will additionally be raised by the diode's forward voltage. Care should be taken to ensure the output still lies within valid voltage levels. See also: The wired OR connection electrically performs the Boolean logic operation of an OR gate using open emitter or similar inputs (which can be identified by the ⎏ symbol in schematics) connected to a shared output with a pull-down resistor. This gate can also be easily extended with more inputs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.