Concept

Heliacal rising

Summary
The heliacal rising (hɪˈlaɪ.əkəl ) or star rise of a star occurs annually, or the similar phenomenon of a planet, when it first becomes visible above the eastern horizon at dawn just before sunrise (thus becoming "the morning star") after a complete orbit of the Earth around the Sun. Historically, the most important such rising is that of Sirius, which was an important feature of the Egyptian calendar and astronomical development. The rising of the Pleiades heralded the start of the Ancient Greek sailing season, using celestial navigation, as well as the farming season (attested by Hesiod in his Works and Days). Helical rising is one of several types of risings and settings, mostly they are grouped into morning and evening risings and settings of objects in the sky. Culmination in the evening and then morning is set apart by half a year, while on the other hand risings and settings in the evenings and the mornings are only at the equator set apart by half a year. Relative to the stars, the Sun appears to drift eastward about one degree per day along a path called the ecliptic because there are 360 degrees in any complete revolution (circle), which takes about 365 days in the case of one revolution of the Earth around the Sun. Any given "distant" star in the belt of the ecliptic will be visible at night for only half of the year, when it will always remain below the horizon. During the other half of the year it will appear to be above the horizon but not visible because the sunlight is too bright during the day. The star's heliacal rising will occur when the Earth has moved to a point in its orbit where the star appears on the eastern horizon at dawn. Each day after the heliacal rising, the star will rise slightly earlier and remain visible for longer before the light from the rising sun overwhelms it. Over the following days the star will move further and further westward (about one degree per day) relative to the Sun, until eventually it is no longer visible in the sky at sunrise because it has already set below the western horizon.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.