In computer science and operations research, the bees algorithm is a population-based search algorithm which was developed by Pham, Ghanbarzadeh et al. in 2005. It mimics the food foraging behaviour of honey bee colonies. In its basic version the algorithm performs a kind of neighbourhood search combined with global search, and can be used for both combinatorial optimization and continuous optimization. The only condition for the application of the bees algorithm is that some measure of distance between the solutions is defined. The effectiveness and specific abilities of the bees algorithm have been proven in a number of studies. A colony of honey bees can extend itself over long distances (over 14 km) and in multiple directions simultaneously to harvest nectar or pollen from multiple food sources (flower patches). A small fraction of the colony constantly searches the environment looking for new flower patches. These scout bees move randomly in the area surrounding the hive, evaluating the profitability (net energy yield) of the food sources encountered. When they return to the hive, the scouts deposit the food harvested. Those individuals that found a highly profitable food source go to an area in the hive called the “dance floor”, and perform a ritual known as the waggle dance. Through the waggle dance a scout bee communicates the location of its discovery to idle onlookers, which join in the exploitation of the flower patch. Since the length of the dance is proportional to the scout’s rating of the food source, more foragers get recruited to harvest the best rated flower patches. After dancing, the scout returns to the food source it discovered to collect more food. As long as they are evaluated as profitable, rich food sources will be advertised by the scouts when they return to the hive. Recruited foragers may waggle dance as well, increasing the recruitment for highly rewarding flower patches. Thanks to this autocatalytic process, the bee colony is able to quickly switch the focus of the foraging effort on the most profitable flower patches.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.