Summary
In Unix-based computer operating systems, init (short for initialization) is the first process started during booting of the operating system. Init is a daemon process that continues running until the system is shut down. It is the direct or indirect ancestor of all other processes and automatically adopts all orphaned processes. Init is started by the kernel during the booting process; a kernel panic will occur if the kernel is unable to start it, or it should die for any reason. Init is typically assigned process identifier 1. In Unix systems such as System III and System V, the design of init has diverged from the functionality provided by the init in Research Unix and its BSD derivatives. Up until recently, most Linux distributions employed a traditional init that was somewhat compatible with System V, while some distributions such as Slackware use BSD-style startup scripts, and others such as Gentoo have their own customized versions. Since then, several additional init implementations have been created, attempting to address design limitations in the traditional versions. These include launchd, the Service Management Facility, systemd, Runit and OpenRC. Research Unix init runs the initialization shell script located at /etc/rc, then launches getty on terminals under the control of /etc/ttys. There are no runlevels; the /etc/rc file determines what programs are run by init. The advantage of this system is that it is simple and easy to edit manually. However, new software added to the system may require changes to existing files that risk producing an unbootable system. BSD init was, prior to 4.3BSD, the same as Research UNIX's init; in 4.3BSD, it added support for running a windowing system such as X on graphical terminals under the control of /etc/ttys. To remove the requirement to edit /etc/rc, BSD variants have long supported a site-specific /etc/rc.local file that is run in a sub-shell near the end of the boot sequence. A fully modular system was introduced with NetBSD 1.5 and ported to FreeBSD 5.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
CS-451: Distributed algorithms
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
PHYS-642: Statistical physics for optimization & learning
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
CS-487: Industrial automation
This course consists of two parts:
  1. architecture of automation systems, hands-on lab
  2. handling of faults and failures in real-time systems, including fault-tolerant computing
Show more