Contamination control is the generic term for all activities aiming to control the existence, growth and proliferation of contamination in certain areas. Contamination control may refer to the atmosphere as well as to surfaces, to particulate matter as well as to microbes and to contamination prevention as well as to decontamination. The aim of all contamination control activities is to permanently ensure a sufficient level of cleanliness in controlled environments. This is accomplished by maintaining, reducing, or eradicating viable and non-viable contamination for either sanitary purposes or in order to maintain an efficient rate of production. One of the most common environments that incorporates contamination control into its standards protocol is the cleanroom. There are many preventive procedures in place within a cleanroom environment. They include subjecting cleanroom staff to strict clothing regulations, and there is often a gowning room where the staff can change clothes under sterile conditions so as to prevent any particulates from entering from the outside environment. Certain areas in the cleanroom have more stringent measures than others: packaging areas, corridors, gowning rooms and transfer hatches incorporate strict contamination control measures in order to maintain cleanroom standards. Contamination control is also an important asset for industrial laboratories in the pharmaceutical and life science sectors. Other places of use include automotive paint shops, entrances to industrial kitchens and food service providers, many manufacturing areas, and electronic component assembly areas. More recently, effective contamination control has been a concern for laboratories and other sensitive environments as a bio-security crisis management measure. Some banks and insurance companies use contamination control products as part of their disaster management protocols. Preventive measures are devised as preparation for combating potential pandemics or the proliferation of biohazards in any potential terrorist attack.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Related publications (4)

MicroFactory

Philipp Kobel

Production in a controlled environment is becoming an increasingly important issue in various branches of industry. In the food, pharmaceutical, optical and semiconductor industries, today’s mass production would not be possible without so-called “cleanroo ...
EPFL2013

Measurements of particulate contamination and migration under vacuum using a large sensitive area particle counter

A large area (50 cm(2)) particle counter working under vacuum (10(-7) mbar) has been developed at CERN and applied to measurements of particles released by several vacuum components like valves, gauges and ion pumps. This technique has also been applied to ...
1999

Description of a dust particle detection system and measurements of particulate contamination from shock, gate valve, and ion pump under ultrahigh vacuum conditions

Dust particle contamination is known to be responsible for reduced quality and yield in microelectronic processing. However it may also limit the operation of particle accelerators as a result of beam lifetime reduction or enhanced field emission in radio- ...
1998
Show more
Related concepts (1)
Particulates
Particulates or atmospheric particulate matter (see below for other names) are microscopic particles of solid or liquid matter suspended in the air. The term aerosol commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Sources of particulate matter can be natural or anthropogenic. They have impacts on climate and precipitation that adversely affect human health, in ways additional to direct inhalation.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.