Summary
Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS, DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include: Sensors, to convert physical parameters to electrical signals. Signal conditioning circuitry, to convert sensor signals into a form that can be converted to digital values. Analog-to-digital converters, to convert conditioned sensor signals to digital values. Data acquisition applications are usually controlled by software programs developed using various general purpose programming languages such as Assembly, BASIC, C, C++, C#, Fortran, Java, LabVIEW, Lisp, Pascal, etc. Stand-alone data acquisition systems are often called data loggers. There are also open-source software packages providing all the necessary tools to acquire data from different, typically specific, hardware equipment. These tools come from the scientific community where complex experiment requires fast, flexible, and adaptable software. Those packages are usually custom-fit but more general DAQ packages like the Maximum Integrated Data Acquisition System can be easily tailored and are used in several physics experiments. In 1963, IBM produced computers that specialized in data acquisition. These include the IBM 7700 Data Acquisition System, and its successor, the IBM 1800 Data Acquisition and Control System. These expensive specialized systems were surpassed in 1974 by general-purpose S-100 computers and data acquisition cards produced by Tecmar/Scientific Solutions Inc. In 1981 IBM introduced the IBM Personal Computer and Scientific Solutions introduced the first PC data acquisition products. Data acquisition begins with the physical phenomenon or physical property to be measured. Examples of this include temperature, vibration, light intensity, gas pressure, fluid flow, and force.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.