Concept

Geologic temperature record

Summary
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time. PaleoclimatologyPaleothermometerMarine isotope stage and Timeline of glaciation Evidence for past temperatures comes mainly from isotopic considerations (especially ); the Mg/Ca ratio of foram tests, and alkenones, are also useful. Often, many are used in conjunction to get a multi-proxy estimate for the temperature. This has proven crucial in studies on glacial/interglacial temperature. The last 3 million years have been characterized by cycles of glacials and interglacials within a gradually deepening ice age. Currently, the Earth is in an interglacial period, beginning about 20,000 years ago (20 kya). The cycles of glaciation involve the growth and retreat of continental ice sheets in the Northern Hemisphere and involve fluctuations on a number of time scales, notably on the 21 ky, 41 ky and 100 ky scales. Such cycles are usually interpreted as being driven by predictable changes in the Earth orbit known as Milankovitch cycles. At the beginning of the Middle Pleistocene (0.8 million years ago, close to the Brunhes–Matuyama geomagnetic reversal) there has been a largely unexplained switch in the dominant periodicity of glaciations from the 41 ky to the 100 ky cycle. The gradual intensification of this ice age over the last 3 million years has been associated with declining concentrations of the greenhouse gas carbon dioxide, though it remains unclear if this change is sufficiently large to have caused the changes in temperatures. Decreased temperatures can cause a decrease in carbon dioxide as, by Henry's Law, carbon dioxide is more soluble in colder waters, which may account for 30ppmv of the 100ppmv decrease in carbon dioxide concentration during the last glacial maximum.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.