**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Correlation

Summary

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related.
Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve.
Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in general, the presence of a correlation is not sufficient to infer the presence of a causal relationship (i.e., correlation does not imply causation).
Formally, random variables are dependent if they do not satisfy a mathematical property of probabilistic independence. In informal parlance, correlation is synonymous with dependence. However, when used in a technical sense, correlation refers to any of several specific types of mathematical operations between the tested variables and their respective expected values. Essentially, correlation is the measure of how two or more variables are related to one another. There are several correlation coefficients, often denoted or , measuring the degree of correlation. The most common of these is the Pearson correlation coefficient, which is sensitive only to a linear relationship between two variables (which may be present even when one variable is a nonlinear function of the other). Other correlation coefficients – such as Spearman's rank correlation – have been developed to be more robust than Pearson's, that is, more sensitive to nonlinear relationships.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (86)

Related courses (31)

Related concepts (39)

Related units (3)

MATH-231: Probability and statistics I

Introduction to notions of probability and basic statistics.

MATH-233: Probability and statistics

Le cours fournit une initiation à la théorie des probabilités et aux méthodes statistiques pour physiciens.

COM-500: Statistical signal and data processing through applications

Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w

Related MOOCs (5)

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.

The phrase "correlation does not imply causation" refers to the inability to legitimately deduce a cause-and-effect relationship between two events or variables solely on the basis of an observed association or correlation between them. The idea that "correlation implies causation" is an example of a questionable-cause logical fallacy, in which two events occurring together are taken to have established a cause-and-effect relationship. This fallacy is also known by the Latin phrase cum hoc ergo propter hoc ('with this, therefore because of this').

In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean a measure of statistical dispersion like the standard mean absolute deviation a measure of the shape of the distribution like skewness or kurtosis if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.

Ontological neighbourhood

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition

This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.

Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition

This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.

Related publications (1,000)

Related lectures (363)

Air Pollution: Correlation Analysis

Covers correlation and cross-correlations in air pollution data analysis, including time series, autocorrelations, Fourier analysis, and power spectrum.

Stylized Facts: Reproducible Research

Covers stylized facts in finance and reproducible research in scientific computing.

Critical Behavior in General Relativity

Explores critical behavior in general relativity, including scaling factor and coupling constant flow.

Using batteries of visual tests, most studies have found that there are only weak correlations between performance levels of tests in healthy young adults. Factor analysis has confirmed these results. This means that a participant excelling in one test may ...

AIM: To characterise the corticoreticular pathway (CRP) in a case -control cohort of adolescent idiopathic scoliosis (AIS) patients using high -resolution slice -accelerated readoutsegmented echo -planar diffusion tensor imaging (DTI) to enhance the discri ...

Michael Herzog, Simona Adele Garobbio

Using batteries of visual tests, most studies have found that there are only weak correlations between the performance levels of the tests. Factor analysis has confirmed these results. This means that a participant excelling in one test may rank low in ano ...

2024