Concept

Image functors for sheaves

Summary
In mathematics, especially in sheaf theory—a domain applied in areas such as topology, logic and algebraic geometry—there are four image functors for sheaves that belong together in various senses. Given a continuous mapping f: X → Y of topological spaces, and the Sh(–) of sheaves of abelian groups on a topological space. The functors in question are f∗ : Sh(X) → Sh(Y) f∗ : Sh(Y) → Sh(X) f! : Sh(X) → Sh(Y) Rf! : D(Sh(Y)) → D(Sh(X)). The exclamation mark is often pronounced "shriek" (slang for exclamation mark), and the maps called "f shriek" or "f lower shriek" and "f upper shriek"—see also shriek map. The exceptional inverse image is in general defined on the level of only. Similar considerations apply to étale sheaves on schemes. The functors are adjoint to each other as depicted at the right, where, as usual, means that F is left adjoint to G (equivalently G right adjoint to F), i.e. Hom(F(A), B) ≅ Hom(A, G(B)) for any two objects A, B in the two categories being adjoint by F and G. For example, f∗ is the left adjoint of f*. By the standard reasoning with adjointness relations, there are natural unit and counit morphisms and for on Y and on X, respectively. However, these are almost never isomorphisms—see the localization example below. Verdier duality gives another link between them: morally speaking, it exchanges "∗" and "!", i.e. in the synopsis above it exchanges functors along the diagonals. For example the direct image is dual to the direct image with compact support. This phenomenon is studied and used in the theory of perverse sheaves. Another useful property of the image functors is base change. Given continuous maps and , which induce morphisms and , there exists a canonical isomorphism . In the particular situation of a closed subspace i: Z ⊂ X and the complementary open subset j: U ⊂ X, the situation simplifies insofar that for j∗=j! and i!=i∗ and for any sheaf F on X, one gets exact sequences 0 → j!j∗ F → F → i∗i∗ F → 0 Its Verdier dual reads i∗Ri! F → F → Rj∗j∗ F → i∗Ri! F[1], a distinguished triangle in the derived category of sheaves on X.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.