In the mathematical field of model theory, a theory is called stable if it satisfies certain combinatorial restrictions on its complexity. Stable theories are rooted in the proof of Morley's categoricity theorem and were extensively studied as part of Saharon Shelah's classification theory, which showed a dichotomy that either the models of a theory admit a nice classification or the models are too numerous to have any hope of a reasonable classification. A first step of this program was showing that if a theory is not stable then its models are too numerous to classify.
Stable theories were the predominant subject of pure model theory from the 1970s through the 1990s, so their study shaped modern model theory and there is a rich framework and set of tools to analyze them. A major direction in model theory is "neostability theory," which tries to generalize the concepts of stability theory to broader contexts, such as simple and NIP theories.
A common goal in model theory is to study a first-order theory by analyzing the complexity of the Boolean algebras of (parameter) definable sets in its models. One can equivalently analyze the complexity of the Stone duals of these Boolean algebras, which are type spaces. Stability restricts the complexity of these type spaces by restricting their cardinalities. Since types represent the possible behaviors of elements in a theory's models, restricting the number of types restricts the complexity of these models.
Stability theory has its roots in Michael Morley's 1965 proof of Łoś's conjecture on categorical theories. In this proof, the key notion was that of a totally transcendental theory, defined by restricting the topological complexity of the type spaces. However, Morley showed that (for countable theories) this topological restriction is equivalent to a cardinality restriction, a strong form of stability now called -stability, and he made significant use of this equivalence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematical logic, Morley rank, introduced by , is a means of measuring the size of a subset of a model of a theory, generalizing the notion of dimension in algebraic geometry. Fix a theory T with a model M. The Morley rank of a formula φ defining a definable (with parameters) subset S of M is an ordinal or −1 or ∞, defined by first recursively defining what it means for a formula to have Morley rank at least α for some ordinal α. The Morley rank is at least 0 if S is non-empty.
In mathematical logic, and particularly in its subfield model theory, a saturated model M is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is -saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection. Let κ be a finite or infinite cardinal number and M a model in some first-order language. Then M is called κ-saturated if for all subsets A ⊆ M of cardinality less than κ, the model M realizes all complete types over A.
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo