Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work we present a multichannel EEG decomposition model based on an adaptive topographic time-frequency approximation technique. It is an extension of the Matching Pur- suit algorithm and called Dependency Multichannel Matching Pursuit (DMMP). It ta ...
Many recent works have shown that if a given signal admits a sufficiently sparse representation in a given dictionary, then this representation is recovered by several standard optimization algorithms, in particular the convex ℓ1 minimization approac ...
This paper addresses the problem of distributed image coding in camera neworks. The correlation between multiple images of a scene captured from different viewpoints can be effiiciently modeled by local geometric transforms of prominent images features. Su ...
This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
In this paper, we propose the use of (adaptive) nonlinear approximation for dimensionality reduction. In particular, we propose a dimensionality reduction method for learning a parts based representation of signals using redundant dictionaries. A redundant ...
This article extends the concept of it compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic ...
In this article we present a signal model for classification based on a low dimensional dictionary embedded into the high dimensional signal space. We develop an alternate projection algorithm to find the embedding and the dictionary and finally test the c ...
Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This par ...
This paper proposes a tree-based pursuit algorithm that efficiently trades off complexity and approximation performance for overcomplete signal expansions. Finding the sparsest representation of a signal using a redundant dictionary is, in general, a NP-Ha ...