Related courses (32)
MGT-448: Statistical inference and machine learning
This course aims to provide graduate students a thorough grounding in the methods, theory, mathematics and algorithms needed to do research and applications in machine learning. The course covers topi
MGT-502: Data science and machine learning
Hands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
EE-613: Machine Learning for Engineers
The objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
EE-612: Fundamentals in statistical pattern recognition
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
FIN-474: Advanced risk management topics
The students learn different financial risk measures and their risk theoretical properties. They learn how to design and implement risk engines, with model estimation, forecast, reporting and validati
MATH-517: Statistical computation and visualisation
The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice pr
CS-456: Deep reinforcement learning
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
ENG-209: Data science for engineers with Python
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
CS-421: Machine learning for behavioral data
Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
PHYS-231: Data analysis for Physics
Ce cours présentera les bases de l'analyse des données et de l'apprentissage à partir des données, l'estimation des erreurs et la stochasticité en physique. Les concepts seront introduits théoriquemen

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.