Species richnessSpecies richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species richness is sometimes considered synonymous with species diversity, but the formal metric species diversity takes into account both species richness and species evenness. Depending on the purposes of quantifying species richness, the individuals can be selected in different ways.
Peat swamp forestPeat swamp forests are tropical moist forests where waterlogged soil prevents dead leaves and wood from fully decomposing. Over time, this creates a thick layer of acidic peat. Large areas of these forests are being logged at high rates. Peat swamp forests are typically surrounded by lowland rain forests on better-drained soils, and by brackish or salt-water mangrove forests near the coast. Tropical peatlands, which coexist with swamp forests within the tropical and subtropical moist broadleaf forests biome, store and accumulate vast amounts of carbon as soil organic matter - much more than natural forests contain.
Temperate deciduous forestTemperate deciduous or temperate broad-leaf forests are a variety of temperate forest 'dominated' by trees that lose their leaves each year. They are found in areas with warm moist summers and cool winters. The six major areas of this forest type occur in the Northern Hemisphere: North America, East Asia, Central and Western Europe (except Brittany, Cornwall, Wales, Ireland and western Scotland), northern Spain, Denmark, southern Sweden, southern Norway and in the southern hemisphere in Patagonia (Chile and Argentina).
Water-meadowA water-meadow (also water meadow or watermeadow) is an area of grassland subject to controlled irrigation to increase agricultural productivity. Water-meadows were mainly used in Europe from the 16th to the early 20th centuries. Working water-meadows have now largely disappeared, but the field patterns and water channels of derelict water-meadows remain common in areas where they were used, such as parts of Northern Italy, Switzerland and England. Derelict water-meadows are often of importance as wetland wildlife habitats.
Substrate (biology)In biology, a substrate is the surface on which an organism (such as a plant, fungus, or animal) lives. A substrate can include biotic or abiotic materials and animals. For example, encrusting algae that lives on a rock (its substrate) can be itself a substrate for an animal that lives on top of the algae. Inert substrates are used as growing support materials in the hydroponic cultivation of plants. In biology substrates are often activated by the nanoscopic process of substrate presentation.
Bank (geography)In geography, a bank is the land alongside a body of water. Different structures are referred to as banks in different fields of geography, as follows. In limnology (the study of inland waters), a stream bank or river bank is the terrain alongside the bed of a river, creek, or stream. The bank consists of the sides of the channel, between which the flow is confined. Stream banks are of particular interest in fluvial geography, which studies the processes associated with rivers and streams and the deposits and landforms created by them.
Plant communityA plant community is a collection or association of plant species within a designated geographical unit, which forms a relatively uniform patch, distinguishable from neighboring patches of different vegetation types. The components of each plant community are influenced by soil type, topography, climate and human disturbance. In many cases there are several soil types present within a given plant community.
Biological soil crustBiological soil crusts are communities of living organisms on the soil surface in arid and semi-arid ecosystems. They are found throughout the world with varying species composition and cover depending on topography, soil characteristics, climate, plant community, microhabitats, and disturbance regimes. Biological soil crusts perform important ecological roles including carbon fixation, nitrogen fixation and soil stabilization; they alter soil albedo and water relations and affect germination and nutrient levels in vascular plants.