Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The crossing number CR(G) of a graph G = (V, E) is the smallest number of edge crossings over all drawings of G in the plane. For any k >= 1, the k-planar crossing number of G, CRk(G), is defined as the minimum of CR(G(0)) + CR(G(1)) + ... + CR(G(k-i)) ove ...
We present a novel method for building a multiresolution representation of large digital surface models. The surface points coincide with the nodes of a planar graph which can be processed using a critically sampled, invertible lifting scheme. To drive the ...
We investigate properties of spatial graphs on the standard torus. It is known that nontrivial embeddings of planar graphs in the torus contain a nontrivial knot or a non-split link due to [2, 3]. Building on this and using the chirality of torus knots and ...
Graph signals offer a very generic and natural representation for data that lives on networks or irregular structures. The actual data structure is however often unknown a priori but can sometimes be estimated from the knowledge of the application domain. ...
We study the impact of metric constraints on the realizability of planar graphs. Let G be a subgraph of a planar graph H (where H is the "host" of G). The graph G is free in H if for every choice of positive lengths for the edges of G, the host H has a pla ...
The Hanani--Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generali ...
We consider straight-line outerplanar drawings of outerplanar graphs in which a small number of distinct edge slopes are used, that is, the segments representing edges are parallel to a small number of directions. We prove that Delta - 1 edge slopes suffic ...
We consider the Node-weighted Steiner Forest problem on planar graphs. Demaine et al. showed that a generic primal-dual algorithm gives a 6-approximation. We present two different proofs of an approximation factor of~3. Then, we draw a connection to Goem ...
We settle a problem of Dujmovic, Eppstein, Suderman, and Wood by showing that there exists a function f with the property that every planar graph G with maximum degree d admits a drawing with noncrossing straight-line edges, using at most f(d) different sl ...