Concept

RC6

Summary
In cryptography, RC6 (Rivest cipher 6) is a symmetric key block cipher derived from RC5. It was designed by Ron Rivest, Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the Advanced Encryption Standard (AES) competition. The algorithm was one of the five finalists, and also was submitted to the NESSIE and CRYPTREC projects. It was a proprietary algorithm, patented by RSA Security. RC6 proper has a block size of 128 bits and supports key sizes of 128, 192, and 256 bits up to 2040-bits, but, like RC5, it may be parameterised to support a wide variety of word-lengths, key sizes, and number of rounds. RC6 is very similar to RC5 in structure, using data-dependent rotations, modular addition, and XOR operations; in fact, RC6 could be viewed as interweaving two parallel RC5 encryption processes, although RC6 does use an extra multiplication operation not present in RC5 in order to make the rotation dependent on every bit in a word, and not just the least significant few bits. Note that the key expansion algorithm is practically identical to that of RC5. The only difference is that for RC6, more words are derived from the user-supplied key. // Encryption/Decryption with RC6-w/r/b // // Input: Plaintext stored in four w-bit input registers A, B, C & D // r is the number of rounds // w-bit round keys S[0, ... , 2r + 3] // // Output: Ciphertext stored in A, B, C, D // // '''Encryption Procedure:''' B = B + S[0] D = D + S[1] for i = 1 to r do { t = (B * (2B + 1)) < lg w u = (D * (2D + 1)) < lg w A = ((A ^ t) < u) + S[2i] C = ((C ^ u) < t) + S[2i + 1] (A, B, C, D) = (B, C, D, A) } A = A + S[2r + 2] C = C + S[2r + 3] // '''Decryption Procedure:''' C = C - S[2r + 3] A = A - S[2r + 2] for i = r downto 1 do { (A, B, C, D) = (D, A, B, C) u = (D * (2D + 1)) < lg w t = (B * (2B + 1)) < lg w C = ((C - S[2i + 1]) >>> t) ^ u A = ((A - S[2i]) >>> u) ^ t } D = D - S[1] B = B - S[0] In August 2016, code reputed to be Equation Group or NSA "implants" for various network security devices was disclosed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.