Sample spaceIn probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
Poisson samplingIn survey methodology, Poisson sampling (sometimes denoted as PO sampling) is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample. Each element of the population may have a different probability of being included in the sample (). The probability of being included in a sample during the drawing of a single sample is denoted as the first-order inclusion probability of that element ().
Quota samplingQuota sampling is a method for selecting survey participants that is a non-probabilistic version of stratified sampling. In quota sampling, a population is first segmented into mutually exclusive sub-groups, just as in stratified sampling. Then judgment is used to select the subjects or units from each segment based on a specified proportion. For example, an interviewer may be told to sample 200 females and 300 males between the age of 45 and 60. This means that individuals can put a demand on who they want to sample (targeting).
Ratio estimatorThe ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals. The bias is of the order O(1/n) (see big O notation) so as the sample size (n) increases, the bias will asymptotically approach 0. Therefore, the estimator is approximately unbiased for large sample sizes.
Selection biasSelection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. It is sometimes referred to as the selection effect. The phrase "selection bias" most often refers to the distortion of a statistical analysis, resulting from the method of collecting samples. If the selection bias is not taken into account, then some conclusions of the study may be false.
PseudorandomnessA pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Simply put, the problem is that many of the sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs. The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling.
Statistical process controlStatistical process control (SPC) or statistical quality control (SQC) is the application of statistical methods to monitor and control the quality of a production process. This helps to ensure that the process operates efficiently, producing more specification-conforming products with less waste scrap. SPC can be applied to any process where the "conforming product" (product meeting specifications) output can be measured. Key tools used in SPC include run charts, control charts, a focus on continuous improvement, and the design of experiments.
Replication (statistics)In engineering, science, and statistics, replication is the repetition of an experimental condition so that the variability associated with the phenomenon can be estimated. ASTM, in standard E1847, defines replication as "... the repetition of the set of all the treatment combinations to be compared in an experiment. Each of the repetitions is called a replicate." Replication is not the same as repeated measurements of the same item: they are dealt with differently in statistical experimental design and data analysis.
Data collectionData collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a research component in all study fields, including physical and social sciences, humanities, and business. While methods vary by discipline, the emphasis on ensuring accurate and honest collection remains the same.
Sampling designIn the theory of finite population sampling, a sampling design specifies for every possible sample its probability of being drawn. Mathematically, a sampling design is denoted by the function which gives the probability of drawing a sample During Bernoulli sampling, is given by where for each element is the probability of being included in the sample and is the total number of elements in the sample and is the total number of elements in the population (before sampling commenced).