Summary
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference. More generally, a point estimator can be contrasted with a set estimator. Examples are given by confidence sets or credible sets. A point estimator can also be contrasted with a distribution estimator. Examples are given by confidence distributions, randomized estimators, and Bayesian posteriors. “Bias” is defined as the difference between the expected value of the estimator and the true value of the population parameter being estimated. It can also be described that the closer the expected value of a parameter is to the measured parameter, the lesser the bias. When the estimated number and the true value is equal, the estimator is considered unbiased. This is called an unbiased estimator. The estimator will become a best unbiased estimator if it has minimum variance. However, A biased estimator with a small variance may be more useful than an unbiased estimator with a large variance. Most importantly, we prefer point estimators that has the smallest mean square errors. If we let T = h(X1,X2, . . . , Xn) be an estimator based on a random sample X1,X2, . . . , Xn, the estimator T is called an unbiased estimator for the parameter θ if E[T] = θ, irrespective of the value of θ. For example, from the same random sample we have E(x̄) = μ (mean) and E(s2) = σ2 (variance), then x̄ and s2 would be unbiased estimators for μ and σ2. The difference E[T ] − θ is called the bias of T ; if this difference is nonzero, then T is called biased.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (5)

A Modular Workflow for Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience

Daniel Keller, Andrii Stepaniuk

Neuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interac
HUMANA PRESS INC2021
Show more
Related concepts (27)
Prediction interval
In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.
Bootstrapping (statistics)
Bootstrapping is any test or metric that uses random sampling with replacement (e.g. mimicking the sampling process), and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods. Bootstrapping estimates the properties of an estimand (such as its variance) by measuring those properties when sampling from an approximating distribution.
Point estimation
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Show more
Related courses (61)
MATH-234(d): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
MATH-442: Statistical theory
The course aims at developing certain key aspects of the theory of statistics, providing a common general framework for statistical methodology. While the main emphasis will be on the mathematical asp
MATH-234(a): Probability and statistics
Ce cours est une introduction à la théorie des probabilités et aux méthodes statistique.
Show more