**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Point estimation

Summary

In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate.
Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference. More generally, a point estimator can be contrasted with a set estimator. Examples are given by confidence sets or credible sets. A point estimator can also be contrasted with a distribution estimator. Examples are given by confidence distributions, randomized estimators, and Bayesian posteriors.
Properties of point estimates
Biasness
“Bias” is defined

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (50)

Loading

Loading

Loading

Related people (7)

Related units (6)

Related lectures (29)

Related concepts (23)

Statistical inference

Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for ex

Maximum likelihood estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelih

Bootstrapping (statistics)

Bootstrapping is any test or metric that uses random sampling with replacement (e.g. mimicking the sampling process), and falls under the broader class of resampling methods. Bootstrapping assigns mea

Related courses (19)

MATH-442: Statistical theory

The course aims at developing certain key aspects of the theory of statistics, providing a common general framework for statistical methodology. While the main emphasis will be on the mathematical aspects of statistics, an effort will be made to balance rigor and intuition.

MATH-233: Probability and statistics

The course gives an introduction to probability and statistics for physicists.

MATH-234(a): Probability and statistics

Ce cours est une introduction à la théorie des probabilités et aux méthodes statistique.

The main scope of this project is to identify the best method of confidence estimator whose performance could be reliable in comparison to multimodal fusion alone. To do that, three alternative approaches to prediction confidence estimation are presented and compared. Among the three methods, the first one is the Gaussian hypothesis, the second one is the non parametric and the third one is the proposed distance method, which will be discuss later on in section 4.3 The three techniques are tested and compared on two different types of fusion (face and speech) methods namely multi layer perceptrons (MLP) and support vector machine (SVM) and the basic modalities were speech and face.

,

We consider the high energy physics unfolding problem where the goal is to estimate the spectrum of elementary particles given observations distorted by the limited resolution of a particle detector. This important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN consists in estimating the intensity function of an indirectly observed Poisson point process. Unfolding typically proceeds in two steps: one first produces a regularized point estimate of the unknown intensity and then uses the variability of this estimator to form frequentist confidence intervals that quantify the uncertainty of the solution. In this paper, we propose forming the point estimate using empirical Bayes estimation which enables a data-driven choice of the regularization strength through marginal maximum likelihood estimation. Observing that neither Bayesian credible intervals nor standard bootstrap confidence intervals succeed in achieving good frequentist coverage in this problem due to the inherent bias of the regularized point estimate, we introduce an iteratively bias-corrected bootstrap technique for constructing improved confidence intervals. We show using simulations that this enables us to achieve nearly nominal frequentist coverage with only a modest increase in interval length. The proposed methodology is applied to unfolding the Z boson invariant mass spectrum as measured in the CMS experiment at the Large Hadron Collider.

This thesis studies statistical inference in the high energy physics unfolding problem, which is an ill-posed inverse problem arising in data analysis at the Large Hadron Collider (LHC) at CERN. Any measurement made at the LHC is smeared by the finite resolution of the particle detectors and the goal in unfolding is to use these smeared measurements to make nonparametric inferences about the underlying particle spectrum. Mathematically the problem consists in inferring the intensity function of an indirectly observed Poisson point process. Rigorous uncertainty quantification of the unfolded spectrum is of central importance to particle physicists. The problem is typically solved by first forming a regularized point estimator in the unfolded space and then using the variability of this estimator to form frequentist confidence intervals. Such confidence intervals, however, underestimate the uncertainty, since they neglect the bias that is used to regularize the problem. We demonstrate that, as a result, conventional statistical techniques as well as the methods that are presently used at the LHC yield confidence intervals which may suffer from severe undercoverage in realistic unfolding scenarios. We propose two complementary ways of addressing this issue. The first approach applies to situations where the unfolded spectrum is expected to be a smooth function and consists in using an iterative bias-correction technique for debiasing the unfolded point estimator obtained using a roughness penalty. We demonstrate that basing the uncertainties on the variability of the bias-corrected point estimator provides significantly improved coverage with only a modest increase in the length of the confidence intervals, even when the amount of bias-correction is chosen in a data-driven way. We compare the iterative bias-correction to an alternative debiasing technique based on undersmoothing and find that, in several situations, bias-correction provides shorter confidence intervals than undersmoothing. The new methodology is applied to unfolding the Z boson invariant mass spectrum measured in the CMS experiment at the LHC. The second approach exploits the fact that a significant portion of LHC particle spectra are known to have a steeply falling shape. A physically justified way of regularizing such spectra is to impose shape constraints in the form of positivity, monotonicity and convexity. Moreover, when the shape constraints are applied to an unfolded confidence set, one can regularize the length of the confidence intervals without sacrificing coverage. More specifically, we form shape-constrained confidence intervals by considering all those spectra that satisfy the shape constraints and fit the smeared data within a given confidence level. This enables us to derive regularized unfolded uncertainties which have by construction guaranteed simultaneous finite-sample coverage, provided that the true spectrum satisfies the shape constraints. The uncertainties are conservative, but still usefully tight. The method is demonstrated using simulations designed to mimic unfolding the inclusive jet transverse momentum spectrum at the LHC.