Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we investigate the significance of contextual information in a phoneme recognition system using the hidden Markov model - artificial neural network paradigm. Contextual information is probed at the feature level as well as at the output of t ...
Standard ASR systems typically use phoneme as the subword units. Preliminary studies have shown that the performance of the ASR system could be improved by using grapheme as additional subword units. In this paper, we investigate such a system where the wo ...
This paper addresses the problem of detecting speech utterances from a large audio archive using a simple spoken query, hence referring to this problem as "Query by Example Spoken Term Detection" (QbE-STD). This still open pattern matching problem has been ...
Objective. This work presents a first motor imagery-based, adaptive brain–computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ...
Phonological deficits in dyslexia are well documented. However, there is an ongoing discussion about whether visual deficits limit the reading skills of people with dyslexia. Here, we investigated visual crowding and backward masking. We presented a Vernie ...
Association for Research in Vision and Ophthalmology2015
The thesis work was motivated by the goal of developing personalized speech-to-speech translation and focused on one of its key component techniques – cross-lingual speaker adaptation for text-to-speech synthesis. A personalized speech-to-speech translator ...
Standard ASR systems typically use phoneme as the subword units. Preliminary studies have shown that the performance of the ASR system could be improved by using grapheme as additional subword units. In this paper, we investigate such a system where the wo ...
State-of-the-art phoneme sequence recognition systems are based on hybrid hidden Markov model/artificial neural networks (HMM/ANN) framework. In this framework, the local classifier, ANN, is typically trained using Viterbi expectation-maximization algorith ...
In this paper, we investigate the significance of contextual information in a phoneme recognition system using the hidden Markov model - artificial neural network paradigm. Contextual information is probed at the feature level as well as at the output of t ...